1
|
Gao R, Tsui PH, Li S, Bin G, Tai DI, Wu S, Zhou Z. Ultrasound normalized cumulative residual entropy imaging: Theory, methodology, and application. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 256:108374. [PMID: 39153229 DOI: 10.1016/j.cmpb.2024.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND OBJECTIVE Ultrasound information entropy imaging is an emerging quantitative ultrasound technique for characterizing local tissue scatterer concentrations and arrangements. However, the commonly used ultrasound Shannon entropy imaging based on histogram-derived discrete probability estimation suffers from the drawbacks of histogram settings dependence and unknown estimator performance. In this paper, we introduced the information-theoretic cumulative residual entropy (CRE) defined in a continuous distribution of cumulative distribution functions as a new entropy measure of ultrasound backscatter envelope uncertainty or complexity, and proposed ultrasound CRE imaging for tissue characterization. METHODS We theoretically analyzed the CRE for Rayleigh and Nakagami distributions and proposed a normalized CRE for characterizing scatterer distribution patterns. We proposed a method based on an empirical cumulative distribution function estimator and a trapezoidal numerical integration for estimating the normalized CRE from ultrasound backscatter envelope signals. We presented an ultrasound normalized CRE imaging scheme based on the normalized CRE estimator and the parallel computation technique. We also conducted theoretical analysis of the differential entropy which is an extension of the Shannon entropy to a continuous distribution, and introduced a method for ultrasound differential entropy estimation and imaging. Monte-Carlo simulation experiments were performed to evaluate the estimation accuracy of the normalized CRE and differential entropy estimators. Phantom simulation and clinical experiments were conducted to evaluate the performance of the proposed normalized CRE imaging in characterizing scatterer concentrations and hepatic steatosis (n = 204), respectively. RESULTS The theoretical normalized CRE for the Rayleigh distribution was π/4, corresponding to the case where there were ≥10 randomly distributed scatterers within the resolution cell of an ultrasound transducer. The theoretical normalized CRE for the Nakagami distribution decreased as the Nakagami parameter m increased, corresponding to that the ultrasound backscattered statistics varied from pre-Rayleigh to Rayleigh and to post-Rayleigh distributions. Monte-Carlo simulation experiments showed that the proposed normalized CRE and differential entropy estimators can produce a satisfying estimation accuracy even when the size of the test samples is small. Phantom simulation experiments showed that the proposed normalized CRE and differential entropy imaging can characterize scatterer concentrations. Clinical experiments showed that the proposed ultrasound normalized CRE imaging is capable to quantitatively characterize hepatic steatosis, outperforming ultrasound differential entropy imaging and being comparable to ultrasound Shannon entropy and Nakagami imaging. CONCLUSION This study sheds light on the theory and methodology of ultrasound normalized CRE. The proposed ultrasound normalized CRE can serve as a new, flexible quantitative ultrasound envelope statistics parameter. The proposed ultrasound normalized CRE imaging may find applications in quantified characterization of biological tissues. Our code will be made available publicly at https://github.com/zhouzhuhuang.
Collapse
Affiliation(s)
- Ruiyang Gao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sinan Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Guangyu Bin
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Dar-In Tai
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Shuicai Wu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
| |
Collapse
|
2
|
Ai H, Huang Y, Tai DI, Tsui PH, Zhou Z. Ultrasonic Assessment of Liver Fibrosis Using One-Dimensional Convolutional Neural Networks Based on Frequency Spectra of Radiofrequency Signals with Deep Learning Segmentation of Liver Regions in B-Mode Images: A Feasibility Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:5513. [PMID: 39275424 PMCID: PMC11397918 DOI: 10.3390/s24175513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
The early detection of liver fibrosis is of significant importance. Deep learning analysis of ultrasound backscattered radiofrequency (RF) signals is emerging for tissue characterization as the RF signals carry abundant information related to tissue microstructures. However, the existing methods only used the time-domain information of the RF signals for liver fibrosis assessment, and the liver region of interest (ROI) is outlined manually. In this study, we proposed an approach for liver fibrosis assessment using deep learning models on ultrasound RF signals. The proposed method consisted of two-dimensional (2D) convolutional neural networks (CNNs) for automatic liver ROI segmentation from reconstructed B-mode ultrasound images and one-dimensional (1D) CNNs for liver fibrosis stage classification based on the frequency spectra (amplitude, phase, and power) of the segmented ROI signals. The Fourier transform was used to obtain the three kinds of frequency spectra. Two classical 2D CNNs were employed for liver ROI segmentation: U-Net and Attention U-Net. ROI spectrum signals were normalized and augmented using a sliding window technique. Ultrasound RF signals collected (with a 3-MHz transducer) from 613 participants (Group A) were included for liver ROI segmentation and those from 237 participants (Group B) for liver fibrosis stage classification, with a liver biopsy as the reference standard (Fibrosis stage: F0 = 27, F1 = 49, F2 = 51, F3 = 49, F4 = 61). In the test set of Group A, U-Net and Attention U-Net yielded Dice similarity coefficients of 95.05% and 94.68%, respectively. In the test set of Group B, the 1D CNN performed the best when using ROI phase spectrum signals to evaluate liver fibrosis stages ≥F1 (area under the receive operating characteristic curve, AUC: 0.957; accuracy: 89.19%; sensitivity: 85.17%; specificity: 93.75%), ≥F2 (AUC: 0.808; accuracy: 83.34%; sensitivity: 87.50%; specificity: 78.57%), and ≥F4 (AUC: 0.876; accuracy: 85.71%; sensitivity: 77.78%; specificity: 94.12%), and when using the power spectrum signals to evaluate ≥F3 (AUC: 0.729; accuracy: 77.14%; sensitivity: 77.27%; specificity: 76.92%). The experimental results demonstrated the feasibility of both the 2D and 1D CNNs in liver parenchyma detection and liver fibrosis characterization. The proposed methods have provided a new strategy for liver fibrosis assessment based on ultrasound RF signals, especially for early fibrosis detection. The findings of this study shed light on deep learning analysis of ultrasound RF signals in the frequency domain with automatic ROI segmentation.
Collapse
Affiliation(s)
- Haiming Ai
- Faculty of Science and Technology, Beijing Open University, Beijing 100081, China;
| | - Yong Huang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China;
| | - Dar-In Tai
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333423, Taiwan;
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China;
| |
Collapse
|
3
|
Li S, Tsui PH, Wu W, Zhou Z, Wu S. Multimodality quantitative ultrasound envelope statistics imaging based support vector machines for characterizing tissue scatterer distribution patterns: Methods and application in detecting microwave-induced thermal lesions. ULTRASONICS SONOCHEMISTRY 2024; 107:106910. [PMID: 38772312 PMCID: PMC11128516 DOI: 10.1016/j.ultsonch.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Ultrasound envelope statistics imaging, including ultrasound Nakagami imaging, homodyned-K imaging, and information entropy imaging, is an important group of quantitative ultrasound techniques for characterizing tissue scatterer distribution patterns, such as scatterer concentrations and arrangements. In this study, we proposed a machine learning approach to integrate the strength of multimodality quantitative ultrasound envelope statistics imaging techniques and applied it to detecting microwave ablation induced thermal lesions in porcine liver ex vivo. The quantitative ultrasound parameters included were homodyned-K α which is a scatterer clustering parameter related to the effective scatterer number per resolution cell, Nakagami m which is a shape parameter of the envelope probability density function, and Shannon entropy which is a measure of signal uncertainty or complexity. Specifically, the homodyned-K log10(α), Nakagami-m, and horizontally normalized Shannon entropy parameters were combined as input features to train a support vector machine (SVM) model to classify thermal lesions with higher scatterer concentrations from normal tissues with lower scatterer concentrations. Through heterogeneous phantom simulations based on Field II, the proposed SVM model showed a classification accuracy above 0.90; the area accuracy and Dice score of higher-scatterer-concentration zone identification exceeded 83% and 0.86, respectively, with the Hausdorff distance <26. Microwave ablation experiments of porcine liver ex vivo at 60-80 W, 1-3 min showed that the SVM model achieved a classification accuracy of 0.85; compared with single log10(α),m, or hNSE parametric imaging, the SVM model achieved the highest area accuracy (89.1%) and Dice score (0.77) as well as the smallest Hausdorff distance (46.38) of coagulation zone identification. We concluded that the proposed multimodality quantitative ultrasound envelope statistics imaging based SVM approach can enhance the capability to characterize tissue scatterer distribution patterns and has the potential to detect the thermal lesions induced by microwave ablation.
Collapse
Affiliation(s)
- Sinan Li
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China.
| | - Shuicai Wu
- Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China.
| |
Collapse
|
4
|
Esposto G, Borriello R, Galasso L, Termite F, Mignini I, Cerrito L, Ainora ME, Gasbarrini A, Zocco MA. Ultrasound Evaluation of Sarcopenia in Patients with Hepatocellular Carcinoma: A Faster and Easier Way to Detect Patients at Risk. Diagnostics (Basel) 2024; 14:371. [PMID: 38396410 PMCID: PMC10887735 DOI: 10.3390/diagnostics14040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The condition of sarcopenia, defined as a progressive loss of musculoskeletal mass and muscular strength, is very common in patients with hepatocellular carcinoma (HCC) and presents a remarkable association with its prognosis. Thus, the early identification of sarcopenic patients represents one of the potential new approaches in the global assessment of HCC, and there is increasing interest regarding the potential therapeutic implications of this condition. The gold standard for the quantification of muscle mass is magnetic resonance imaging (MRI) or computed tomography (CT), but these techniques are not always feasible because of the high-cost equipment needed. A new possibility in sarcopenia identification could be muscle ultrasound examination. The measurement of specific parameters such as the muscle thickness, muscular fascicles length or pennation angle has shown a good correlation with CT or MRI values and a good diagnostic accuracy in the detection of sarcopenia. Recently, these results were also confirmed specifically in patients with chronic liver disease. This review summarizes the role of imaging for the diagnosis of sarcopenia in patients with HCC, focusing on the advantages and disadvantages of the diagnostic techniques currently validated for this aim and the future perspectives for the identification of this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (G.E.); (R.B.); (L.G.); (F.T.); (I.M.); (L.C.); (M.E.A.); (A.G.)
| |
Collapse
|