1
|
Seibt ACMD, Nerhing P, Pinton MB, Santos SP, Leães YSV, De Oliveira FDC, Robalo SS, Casarin BC, Dos Santos BA, Barin JS, Wagner R, De Menezes CR, Campagnol PCB, Cichoski AJ. Green technologies applied to low-NaCl fresh sausages production: Impact on oxidative stability, color formation, microbiological properties, volatile compounds, and sensory profile. Meat Sci 2024; 209:109418. [PMID: 38113656 DOI: 10.1016/j.meatsci.2023.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
The influence of different concentrations of NaCl (2.5% and 1.75%), basic electrolyzed water (BEW), and ultrasound (US, 25 kHz, 159 W) on the quality of fresh sausages was studied. During storage at 5 °C, TBARS, pH, Eh, aw, nitrous pigments, and bacterial evolution were evaluated at three specific time intervals: 1d, 15d, and 30d. At the same time, the volatile compounds and sensory profile were specifically assessed on both the 1d and 30d. Notably, sausages with 1.75% NaCl and BEW displayed higher pH values (up to 6.30) and nitrous pigment formation, alongside reduced Eh (as low as 40.55 mV) and TBARS values (ranging from 0.016 to 0.134 mg MDA/kg sample), compared to the 2.5% NaCl variants. Protein content ranged between 13.01% and 13.75%, while lipid content was between 18.23% and 18.86%, consistent across all treatments. Psychrotrophic lactic bacteria showed a significant increase in low-NaCl sausages, ranging from 5.77 to 7.59 log CFU/g, indicative of potential preservative benefits. The sensory analysis favored the TUSBEW70 treatment for its salty flavor on the 30th day, reflecting a positive sensory acceptance. The study highlights that employing US and BEW in sausage preparation with reduced NaCl content (1.75%) maintains quality comparable to higher salt (2.5%) counterparts. These findings are crucial for meat processing, presenting a viable approach to producing healthier sausages with reduced sodium content without compromising quality, aligning with consumer health preferences and industry standards.
Collapse
Affiliation(s)
| | - Priscila Nerhing
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Mariana Basso Pinton
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Suelen Priscila Santos
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Yasmim Sena Vaz Leães
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | | | - Silvino Sasso Robalo
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Bianca Campos Casarin
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | | | - Juliano Smanioto Barin
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Roger Wagner
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
2
|
Leães YSV, Lorenzo JM, Seibt ACMD, Pinton MB, Robalo SS, Mello RDO, Wagner R, Barin JS, De Menezes CR, Campagnol PCB, Cichoski AJ. Do ultrasound form spontaneously nitrous pigments in nitrite-free pork meat batter? Meat Sci 2023; 203:109231. [PMID: 37263032 DOI: 10.1016/j.meatsci.2023.109231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
The effects of ultrasound (US) on myoglobin modification, nitrous pigment formation, color, and total and free sulfhydryl content in nitrite-free pork meat batter were assessed. Five treatments were elaborated: Control (without US); TUS10'12 and TUS20'12 (sonication at 25 kHz, at 12 °C for 10 and 20 min, respectively); TUS10'18 and TUS20'18 (sonication at 25 kHz, at 18 °C for 10 and 20 min, respectively). Sonication for 20 min at 12 °C increased OxyMb and DeoxyMb pigments while reducing MetMb levels. This US condition also yielded higher red color indices and lower yellow color indices. Moreover, TUS20'12 exhibited enhanced nitrous pigment formation and decreased FerrylMb and free sulfhydryl (SH) values, indicating reduced oxidation in OxyMb and DeoxyMb pigments. In conclusion, the findings demonstrate that US can impart a cured color to nitrite-free meat products.
Collapse
Affiliation(s)
- Yasmim Sena Vaz Leães
- Federal University of Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
| | | | - Mariana Basso Pinton
- Federal University of Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Silvino Sasso Robalo
- Federal University of Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | | | - Roger Wagner
- Federal University of Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
3
|
Salmonella Prophages, Their Propagation, Host Specificity and Antimicrobial Resistance Gene Transduction. Antibiotics (Basel) 2023; 12:antibiotics12030595. [PMID: 36978463 PMCID: PMC10045043 DOI: 10.3390/antibiotics12030595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Salmonella enterica subsp. enterica is a zoonotic bacterial pathogen that causes foodborne outbreaks in humans. Lytic bacteriophages to control Salmonella in food production are already being used in scientific studies and some are commercially available. However, phage application is still controversial. In addition to virulent phages, which are used in phage therapy and lyse the bacterial host, lysogenic phages coexist in the environment and can reside as prophages in the bacterial host. Therefore, information about Salmonella prophages is essential to understand successful phage therapy. In 100 Salmonella food isolates of the serovars Enteritidis and Typhimurium, we propagated prophages by oxidative stress. In isolates of the serovars Typhimurium and Enteritidis, 80% and 8% prophages could be activated, respectively. In the phage lysates from the serovar Typhimurium, the following antibiotic resistance genes or gene fragments were detected by PCR: sul1, sul2, blaTEM, strA and cmlA; however, no tetA,B,C, blaOXA, blaCMY, aadA1, dfr1,2 or cat were detected. In contrast, no resistance genes were amplified in the phage lysates of the serovar Enteritidis. None of the phage lysates was able to transduce phenotypic resistance to WT 14028s. Most of the prophage lysates isolated were able to infect the various Salmonella serovars tested. The high abundance of prophages in the genome of the serovar Typhimurium may counteract phage therapy through phage resistance and the development of hybrid phages.
Collapse
|
4
|
Schopfer B, Mitrenga S, Boulaaba A, Roolfs K, Plötz M, Becker A. Red beet and Swiss chard juice extract as natural nitrate sources for the production of alternatively-cured emulsion-type sausages. Meat Sci 2022; 188:108780. [DOI: 10.1016/j.meatsci.2022.108780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
|
5
|
Abstract
Abstract
Purpose of Review
Curing—the treatment of meat products with nitrite and nitrate—is controversially discussed by consumers, as increased consumption of cured foods might negatively influence human health.
Recent Findings
However, omitting of curing chemicals might reduce microbiological safety, thereby increasing the risk to consumer health. Also, besides the addition of nitrate/nitrite, meat products are additionally preserved within the hurdle principle by other methods such as chilling, ripening, or heating.
Summary
The present article focuses on the addition of plants/plant extracts or plasma-treated water as nitrate sources and the direct treatment of meat products with plasma for nitrate generation. With regard to color and microbial safety of cured meat products, which are relevant to the consumers, promising results were also obtained with the alternative curing methods. Nonetheless, it is doubtful to what extent these methods are viable alternatives, as the curing chemicals themselves and not their origin are problematic for consumer health.
Collapse
|
6
|
Application of Lactiplantibacillus plantarum SCH1 for the Bioconservation of Cooked Sausage Made from Mechanically Separated Poultry Meat. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the research was an assessment of the effect of the Lactiplantibacillus plantarum SCH1 strain isolated from ecological raw fermented pork roast on pH, redox potential, nitrites, and nitrates content, L a* b* color parameters, total heme pigments content, nitrosyl myoglobin concentration, as well as the microbiological quality and sensory traits of cooked sausages produced from mechanically separated poultry meat (MSPM), cured with a lower sodium nitrite level (NaNO2 50 mg/kg) after production as well as after storage (1 and 3 weeks of storage). The biochemical identification of the Lactobacillus bacteria after storage was also performed. Tests were performed in two sausage treatments: C—control sausage made from MSPM and L—sausage made from MSPM inoculated with L. plantarum at approx. 107 cfu/g. No negative effect of using the L. plantarum SCH1 strain on the physical and chemical MSPM sausage features was found. The treatment with L. plantarum SCH1 was of better microbiological quality after 3 weeks of storage. The sausages with L. plantarum SCH1 kept good sensory quality while the control treatment was spoiled after storage.
Collapse
|
7
|
The Use of the Mixed Bacteria Limosilactobacillus fermentum and Staphylococcus carnosus in the Meat Curing Process with a Reduced Amount of Sodium Nitrite. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of the research was to estimate the possibility of using mixed bacteria cultures consisting of Lactobacillus fermentum S8 and Staphylococcus carnosus ATCC 51365 in the meat curing process with a reduced amount of sodium nitrite and to study the effect of bacteria on residual nitrites and nitrates, nitrosyl pigments content, colour, pH, redox potential, microbiologic, and the sensory quality of a cooked meat product. The study was performed on heat treated three-model meat treatments in cans: (C) a control treatment with NaNO2 at 100 mg/kg, (M) a treatment with NaNO2 at 50 mg/kg and (SL) a treatment with NaNO2 at 50 mg/kg and L. fermentum S8 at about 107 cfu/g and S. carnosus ATCC 51365 at about of 107 cfu/g. The research was performed after production and after cold storage. It was shown that using a mixed bacteria culture for meat curing had an influence (p < 0.05) on reducing nitrite and nitrate levels and increasing the amount of nitrosyl pigments in the SL treatment compared to the M treatment. Applying mixed bacteria in curing meat with NaNO2 at 50 mg/kg allowed for obtaining a higher redness in the cooked meat product after production, storage and exposure to light than in the product cured with NaNO2 at 100 mg/kg, with similar sensory and microbiological quality in both products.
Collapse
|
8
|
Effects of the Use of Staphylococcus carnosus in the Curing Process of Meat with a Reduced Amount of Sodium Nitrite on Colour, Residue Nitrite and Nitrate, Content of Nitrosyl Pigments, and Microbiological and the Sensory Quality of Cooked Meat Product. J FOOD QUALITY 2020. [DOI: 10.1155/2020/6141728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of the work was to apply the bacteria Staphylococcus carnosus ATCC 51365 in the meat curing process with the use of a reduced amount of sodium nitrite and to evaluate the effects of bacteria on residual nitrites and nitrates, the content of nitrosyl pigments, colour, pH, oxidation-reduction potential, microbiological, and the sensory quality of a cooked meat product. Three meat batters in cans were prepared: (C) a control batter cured with NaNO2—100 mg/kg, (L) a batter cured with NaNO2—15 mg/kg, and (LS) a batter cured with NaNO2—15 mg/kg and S. carnosus (107 CFU/g). The cans were stored at a temperature of 4°C for 24 h (curing time) and cooked. The analysis was carried out after production and after 4 and 8 weeks of storage. The use of denitrifying bacteria in the curing process with a reduced amount of sodium nitrite increased the availability of nitrite in the meat, by reducing nitrates formed as a result of a dismutation reaction. The reaction contributed to the formation of nitrosyl pigments in a larger quantity than in the treatment in which the denitrifying bacteria were not used. The LS treatment was characterized by the greatest redness. The colour of the LS treatment was stable during storage. No negative effect of S. carnosus on the sensory quality of the meat product was found. The use of S. carnosus had no influence on the microbiological quality of meat product during storage.
Collapse
|
9
|
Risk assessment of chemical substances of safety concern generated in processed meats. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Zhang H, Sun C, Han W, Zhang J, Hou J. Analysis of the monitoring status of residual nitrite in meat products in China from 2000 to 2011. Meat Sci 2018; 136:30-34. [DOI: 10.1016/j.meatsci.2017.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 11/16/2022]
|
11
|
Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Dusemund B, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Lambré C, Leblanc JC, Lindtner O, Moldeus P, Mosesso P, Oskarsson A, Parent-Massin D, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, van den Brandt P, Fortes C, Merino L, Toldrà F, Arcella D, Christodoulidou A, Cortinas Abrahantes J, Barrucci F, Garcia A, Pizzo F, Battacchi D, Younes M. Re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives. EFSA J 2017; 15:e04786. [PMID: 32625504 PMCID: PMC7009987 DOI: 10.2903/j.efsa.2017.4786] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Panel on Food Additives and Nutrient Sources added to Food (ANS) provided a scientific opinion re-evaluating the safety of potassium nitrite (E 249) and sodium nitrite (E 250) when used as food additives. The ADIs established by the SCF (1997) and by JECFA (2002) for nitrite were 0-0.06 and 0-0.07 mg/kg bw per day, respectively. The available information did not indicate in vivo genotoxic potential for sodium and potassium nitrite. Overall, an ADI for nitrite per se could be derived from the available repeated dose toxicity studies in animals, also considering the negative carcinogenicity results. The Panel concluded that an increased methaemoglobin level, observed in human and animals, was a relevant effect for the derivation of the ADI. The Panel, using a BMD approach, derived an ADI of 0.07 mg nitrite ion/kg bw per day. The exposure to nitrite resulting from its use as food additive did not exceed this ADI for the general population, except for a slight exceedance in children at the highest percentile. The Panel assessed the endogenous formation of nitrosamines from nitrites based on the theoretical calculation of the NDMA produced upon ingestion of nitrites at the ADI and estimated a MoE > 10,000. The Panel estimated the MoE to exogenous nitrosamines in meat products to be < 10,000 in all age groups at high level exposure. Based on the results of a systematic review, it was not possible to clearly discern nitrosamines produced from the nitrite added at the authorised levels, from those found in the food matrix without addition of external nitrite. In epidemiological studies there was some evidence to link (i) dietary nitrite and gastric cancers and (ii) the combination of nitrite plus nitrate from processed meat and colorectal cancers. There was evidence to link preformed NDMA and colorectal cancers.
Collapse
|
12
|
King AM, Glass KA, Milkowski AL, Seman DL, Sindelar JJ. Modeling the Impact of Ingoing Sodium Nitrite, Sodium Ascorbate, and Residual Nitrite Concentrations on Growth Parameters of Listeria monocytogenes in Cooked, Cured Pork Sausage. J Food Prot 2016; 79:184-93. [PMID: 26818978 DOI: 10.4315/0362-028x.jfp-15-322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sodium nitrite has been identified as a key antimicrobial ingredient to control pathogens in ready-to-eat (RTE) meat and poultry products, including Listeria monocytogenes. This study was designed to more clearly elucidate the relationship between chemical factors (ingoing nitrite, ascorbate, and residual nitrite) and L. monocytogenes growth in RTE meats. Treatments of cooked, cured pork sausage (65% moisture, 1.8% salt, pH 6.6, and water activity 0.98) were based on response surface methodology with ingoing nitrite and ascorbate concentrations as the two main factors. Concentrations of nitrite and ascorbate, including star points, ranged from 0 to 352 and 0 to 643 ppm, respectively. At one of two time points after manufacturing (days 0 and 28), half of each treatment was surface inoculated to target 3 log CFU/g of a five-strain L. monocytogenes cocktail, vacuum packaged, and stored at 7°C for up to 4 weeks. Growth of L. monocytogenes was measured twice per week, and enumerations were used to estimate lag time and growth rates for each treatment. Residual nitrite concentrations were measured on days 0, 4, 7, 14, 21, and 28, and nitrite depletion rate was estimated by using first-order kinetics. The response surface methodology was used to model L. monocytogenes lag time and growth rate based on ingoing nitrite, ascorbate, and the residual nitrite remaining at the point of inoculation. Modeling results showed that lag time was impacted by residual nitrite concentration remaining at inoculation, as well as the squared term of ingoing nitrite, whereas growth rate was affected by ingoing nitrite concentration but not by the remaining residual nitrite at the point of inoculation. Residual nitrite depletion rate was dependent upon ingoing nitrite concentration and was only slightly affected by ascorbate concentration. This study confirmed that ingoing nitrite concentration influences L. monocytogenes growth in RTE products, yet residual nitrite concentration contributes to the antimicrobial impact of nitrite as well.
Collapse
Affiliation(s)
- Amanda M King
- Department of Animal Sciences, University of Wisconsin-Madison, 1805 Linden Drive, Madison, Wisconsin 53706, USA
| | - Kathleen A Glass
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | - Andrew L Milkowski
- Department of Animal Sciences, University of Wisconsin-Madison, 1805 Linden Drive, Madison, Wisconsin 53706, USA
| | - Dennis L Seman
- Kraft Heinz Company/Oscar Mayer, 910 Mayer Avenue, Madison, Wisconsin 53704, USA
| | - Jeffrey J Sindelar
- Department of Animal Sciences, University of Wisconsin-Madison, 1805 Linden Drive, Madison, Wisconsin 53706, USA.
| |
Collapse
|
13
|
Siddiqui MR, Wabaidur SM, ALOthman ZA, Rafiquee MZA. Rapid and sensitive method for analysis of nitrate in meat samples using ultra performance liquid chromatography-mass spectrometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:861-866. [PMID: 26184470 DOI: 10.1016/j.saa.2015.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
A sensitive and selective ultra performance liquid chromatography-mass spectrometric method has been developed for the quantitative analysis of nitrate in meat samples. Selected ion reaction (SIR) mode was adopted to identify and quantify the nitrate. Chromatographic analyses were performed on a BEH C-18 column with a mobile phase consisting of a surfactant (Cetylpyridinium chloride) and acetonitrile in equal ratio (50/50, v/v) at a flow rate of 0.4 mL min(-1). The limit of detection and limit of quantitation of the developed method was found to be 0.0599 and 0.1817 mg kg(-1), respectively. The linearity of the proposed method was checked in the concentration range of 0.5-10 mg kg(-1) with an excellent correlation coefficient (r) of 0.997. The recovery of the nitrate in the meat samples were in the range of 98.02-98.99%.
Collapse
Affiliation(s)
- Masoom Raza Siddiqui
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia.
| | - Saikh Mohammad Wabaidur
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Zeid A ALOthman
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - M Z A Rafiquee
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia; Department of Applied Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|