1
|
Cournoyer A, Bazinet L. Electrodialysis Processes an Answer to Industrial Sustainability: Toward the Concept of Eco-Circular Economy?-A Review. MEMBRANES 2023; 13:205. [PMID: 36837708 PMCID: PMC9962313 DOI: 10.3390/membranes13020205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Wastewater and by-product treatments are substantial issues with consequences for our society, both in terms of environmental impacts and economic losses. With an overall global objective of sustainable development, it is essential to offer eco-efficient and circular solutions. Indeed, one of the major solutions to limit the use of new raw materials and the production of wastes is the transition toward a circular economy. Industries must find ways to close their production loops. Electrodialysis (ED) processes such as conventional ED, selective ED, ED with bipolar membranes, and ED with filtration membranes are processes that have demonstrated, in the past decades and recently, their potential and eco-efficiency. This review presents the most recent valorization opportunities among different industrial sectors (water, food, mining, chemistry, etc.) to manage waste or by-product resources through electrodialysis processes and to improve global industrial sustainability by moving toward circular processes. The limitations of existing studies are raised, especially concerning eco-efficiency. Indeed, electrodialysis processes can be optimized to decrease energy consumption and costs, and to increase efficiency; however, eco-efficiency scores should be determined to compare electrodialysis with conventional processes and support their advantages. The review shows the high potential of the different types of electrodialysis processes to treat wastewaters and liquid by-products in order to add value or to generate new raw materials. It also highlights the strong interest in using eco-efficient processes within a circular economy. The ideal scenario for sustainable development would be to make a transition toward an eco-circular economy.
Collapse
Affiliation(s)
| | - Laurent Bazinet
- Department of Food Sciences, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Institute of Nutrition and Functional Foods (INAF), Dairy Research Center (STELA), Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Cournoyer A, Thibodeau J, Ben Said L, Sanchez-Reinoso Z, Mikhaylin S, Fliss I, Bazinet L. How Discoloration of Porcine Cruor Hydrolysate Allowed the Identification of New Antifungal Peptides. Foods 2022; 11:foods11244035. [PMID: 36553781 PMCID: PMC9778238 DOI: 10.3390/foods11244035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Porcine blood is an important by-product from slaughterhouses and an abundant source of proteins. Indeed, cruor, the solid part of blood, is mainly composed of hemoglobin. Its enzymatic hydrolysis with pepsin generates a diversity of peptides, particularly antimicrobials. One of the downsides of using these hydrolysates as food bio-preservatives is the color brought by the heme, which can be removed by discoloration. Nonetheless, the effects of this procedure on the antimicrobial peptide population have not been completely investigated. In this study, its impacts were evaluated on the final antibacterial and antifungal activities of a cruor hydrolysate. The results demonstrated that 38 identified and characterized peptides showed a partial or total decrease in the hydrolysate, after discoloration. Antifungal activities were observed for the raw and discolored hydrolysates: MICs vary between 0.1 and 30.0 mg/mL of proteins, and significant differences were detected between both hydrolysates for the strains S. boulardii, C. guilliermondii, K. marxianus, M. racemosus and P. chrysogenum. The raw hydrolysate showed up to 12 times higher antifungal activities. Hence, peptides with the highest relative abundance decrease after discoloration were synthesized and tested individually. In total, eight new antifungal peptides were characterized as active and promising. To our knowledge, this is the first time that effective antifungal peptide sequences have been reported from porcine cruor hydrolysates.
Collapse
Affiliation(s)
- Aurore Cournoyer
- Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Process), Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Jacinthe Thibodeau
- Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Process), Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Laila Ben Said
- Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Zain Sanchez-Reinoso
- Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Process), Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Sergey Mikhaylin
- Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Process), Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Ismail Fliss
- Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Laurent Bazinet
- Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada
- Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Process), Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 407445)
| |
Collapse
|
3
|
Roles of Proteins/Enzymes from Animal Sources in Food Quality and Function. Foods 2021; 10:foods10091988. [PMID: 34574100 PMCID: PMC8465642 DOI: 10.3390/foods10091988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
Animal proteins are good sources of protein for human, due to the composition of necessary amino acids. The quality of food depends significantly on the properties of protein inside, especially the gelation, transportation, and antimicrobial properties. Interestingly, various kinds of molecules co-exist with proteins in foodstuff, and the interactions between these can significantly affect the food quality. In food processing, these interactions have been used to improve the texture, color, taste, and shelf-life of animal food by affecting the gelation, antioxidation, and antimicrobial properties of proteins. Meanwhile, the binding properties of proteins contributed to the nutritional properties of food. In this review, proteins in meat, milk, eggs, and fishery products have been summarized, and polysaccharides, polyphenols, and other functional molecules have been applied during food processing to improve the nutritional and sensory quality of food. Specific interactions between functional molecules and proteins based on the crystal structures will be highlighted with an aim to improve the food quality in the future.
Collapse
|
4
|
Modification of NaCl structure as a sodium reduction strategy in meat products: An overview. Meat Sci 2021; 174:108417. [PMID: 33387830 DOI: 10.1016/j.meatsci.2020.108417] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022]
Abstract
Sodium chloride (NaCl) is an indispensable ingredient in meat products, but the consumption of high doses of sodium contained in their formulations may bring about negative health implications. The replacement of NaCl by other salts in meat products has been a technological challenge. Accordingly, this review highlights the importance of NaCl over other sodium and non‑sodium salts in the saltiness perception and proposes the use of reduced-size and shapes of NaCl to maximize saltiness perception, while using less NaCl dosages in meat products. However, the effect of matrix components (water, proteins and fats) on the final salty taste is of special consideration. To counteract the effect of the matrix components, two main routes of incorporation of different NaCl types in meat products are discussed: encapsulation and protection of NaCl by the hydrophobic component of the meat product. Given the limited number of publications using this potential strategy, more studies on the application of these technological strategies are required.
Collapse
|
5
|
l-Lysine/l-arginine/l-cysteine synergistically improves the color of cured sausage with NaNO 2 by hindering myoglobin oxidation and promoting nitrosylmyoglobin formation. Food Chem 2019; 284:219-226. [PMID: 30744849 DOI: 10.1016/j.foodchem.2019.01.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 02/02/2023]
Abstract
This study aimed to evaluate the effects of l-lysine (Lys)/l-arginine (Arg)/l-cysteine (Cys) on the color of cured sausage and the possible mechanism underlying these effects. The results indicated that the combined addition of Arg/Lys/Cys and NaNO2 effectively increased the a* values and nitroso pigment content but decreased the MetMb(Fe3+) content in cured sausage, compared with the individual addition of Arg/Lys/Cys and NaNO2. The cured sausage treated with combined Arg/Lys/Cys and NaNO2 contained significantly lower residual nitrite than those treated with only NaNO2. UV-vis spectroscopy and electron paramagnetic resonance spectroscopy revealed that pentacoordinate nitrosyl ferrohemochrome was the main pigment component in the cured sausage treated with NaNO2 or combined Arg/Lys/Cys and NaNO2 and higher content in the latter one. The results suggest that Arg/Lys/Cys hindered myoglobin oxidation and promoted pentacoordinate nitrosylmyoglobin formation, which could contribute to the improved color of cured sausage. The results are of interest in the meat industry.
Collapse
|
6
|
Djenane D, Roncalés P. Carbon Monoxide in Meat and Fish Packaging: Advantages and Limits. Foods 2018; 7:foods7020012. [PMID: 29360803 PMCID: PMC5848116 DOI: 10.3390/foods7020012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/29/2017] [Accepted: 01/15/2018] [Indexed: 01/17/2023] Open
Abstract
Due to increased demands for greater expectation in relation to quality, convenience, safety and extended shelf-life, combined with growing demand from retailers for cost-effective extensions of fresh muscle foods’ shelf-life, the food packaging industry quickly developed to meet these expectations. During the last few decades, modified atmosphere packaging (MAP) of foods has been a promising area of research, but much remains to be known regarding the use of unconventional gases such carbon monoxide (CO). The use of CO for meat and seafood packaging is not allowed in most countries due to the potential toxic effect, and its use is controversial in some countries. The commercial application of CO in food packaging was not then considered feasible because of possible environmental hazards for workers. CO has previously been reported to mask muscle foods’ spoilage, and this was the primary concern raised for the prohibition, as this may mislead consumers. This review was undertaken to present the most comprehensive and current overview of the widely-available, scattered information about the use of CO in the preservation of muscle foods. The advantages of CO and its industrial limits are presented and discussed. The most recent literature on the consumer safety issues related to the use of CO and consumer acceptance of CO especially in meat packaging systems were also discussed. Recommendations and future prospects were addressed for food industries, consumers and regulators on what would be a “best practice” in the use of CO in food packaging. All this promotes high ethical standards in commercial communications by means of effective regulation, for the benefit of consumers and businesses in the world, and this implies that industrialized countries and members of their regulatory agencies must develop a coherent and robust systems of regulation and control that can respond effectively to new challenges.
Collapse
Affiliation(s)
- Djamel Djenane
- Laboratory of Food Quality and Food Safety, Department of Food Science and Technology, University Mouloud Mammeri, P.O. Box 17, Tizi-Ouzou 15000, Algeria.
| | - Pedro Roncalés
- Laboratory of Meat and Fish Technology, Department of Animal Production and Food Science, Faculty of Veterinary Sciences, University of Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain.
| |
Collapse
|
8
|
Lynch SA, Mullen AM, O'Neill EE, García CÁ. Harnessing the Potential of Blood Proteins as Functional Ingredients: A Review of the State of the Art in Blood Processing. Compr Rev Food Sci Food Saf 2017; 16:330-344. [PMID: 33371539 DOI: 10.1111/1541-4337.12254] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Abstract
Blood is generated in very large volumes as a by-product in slaughterhouses all around the world. On the one hand, blood generation presents a serious environmental issue because of its high pollutant capacity; however, on the other hand, blood has the potential to be collected and processed to generate high-added-value food ingredients based on its exceptional nutritive value and its excellent functional properties. In this paper, we review the current state of the art for blood processing, from collection to final recovery of protein isolates, the functional properties of blood, impact of processing on functional properties, and potential applications as food ingredients. Furthermore, future challenges are outlined for this underutilized and abundant product from the meat industry.
Collapse
Affiliation(s)
- Sarah A Lynch
- Teagasc Food Research Centre, Food Quality and Sensory Science, Ashtown, Dublin, 15, Ireland
| | - Anne Maria Mullen
- Teagasc Food Research Centre, Food Quality and Sensory Science, Ashtown, Dublin, 15, Ireland
| | - Eileen E O'Neill
- Dept. of Food and Nutritional Sciences, Univ. College Cork, Cork, Ireland
| | - Carlos Álvarez García
- Teagasc Food Research Centre, Food Quality and Sensory Science, Ashtown, Dublin, 15, Ireland
| |
Collapse
|
10
|
The role of monoxide hemoglobin in color improvement of chicken sausage. Food Sci Biotechnol 2016; 25:409-414. [PMID: 30263284 DOI: 10.1007/s10068-016-0056-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022] Open
Abstract
The role of monoxide hemoglobin (COHb) in improvement of chicken sausage color was investigated. COHb and NaNO2 synergistically increased a* values. Addition of 0.1% COHb decreased the residual nitrite content in the presence of 0.001% NaNO2. Compared with controls, the combined treatment resulted in significantly higher nitroso pigment contents while the single treatment resulted in slightly higher nitroso pigment contents. Visible spectrometry indicated that both nitrosohemochrome (NH) and hematin were the main ingredients of pigments extracted from chicken sausage treated with a combination of 0.006% NaNO2 and 0.6% COHb. Formation of NH and hematin caused an increase in a* values and a decrease in L* values, respectively. COHb showed potential for use in meat product formulations.
Collapse
|