1
|
Fodor M, Matkovits A, Benes EL, Jókai Z. The Role of Near-Infrared Spectroscopy in Food Quality Assurance: A Review of the Past Two Decades. Foods 2024; 13:3501. [PMID: 39517284 PMCID: PMC11544831 DOI: 10.3390/foods13213501] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
During food quality control, NIR technology enables the rapid and non-destructive determination of the typical quality characteristics of food categories, their origin, and the detection of potential counterfeits. Over the past 20 years, the NIR results for a variety of food groups-including meat and meat products, milk and milk products, baked goods, pasta, honey, vegetables, fruits, and luxury items like coffee, tea, and chocolate-have been compiled. This review aims to give a broad overview of the NIRS processes that have been used thus far to assist researchers employing non-destructive techniques in comparing their findings with earlier data and determining new research directions.
Collapse
Affiliation(s)
- Marietta Fodor
- Department of Food and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary; (A.M.); (E.L.B.); (Z.J.)
| | | | | | | |
Collapse
|
2
|
Niu G, Zhang T, Tao L. Development and validation of a near-infrared spectroscopy model for the prediction of muscle protein in Chinese native chickens. Poult Sci 2024; 103:103532. [PMID: 38359771 PMCID: PMC10878109 DOI: 10.1016/j.psj.2024.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
This study investigated the ability of the near-infrared spectroscopy (NIRS) model to predict the protein of freeze-dried muscle samples in Chinese native chickens and to determine the accuracy of the models for other native chicken breeds. Spectral pretreatment, wavelength selection, and outlier sample elimination were used to optimize the calibration models. The results showed that the best model was obtained by using a combination of standard normal variable transformation and gap-segment first-derivative pretreatment spectra after removing 48 outliers in the wavelength range of 1,439 to 1,900 nm, with coefficient of determination for the calibration (R2C) of 0.95, standard error of cross-validation (SECV) of 1.18, coefficient of determination for the prediction (R2P) of 0.95, the ratio of the standard deviation of the validation to the standard deviation of the calibration (RPDP) of 4.62. The findings indicated that NIRS can be used to predict the protein of freeze-dried muscle in Chinese native chickens.
Collapse
Affiliation(s)
- Guoyi Niu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingrui Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Linli Tao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
3
|
Muncan J, Anantawittayanon S, Furuta T, Kaneko T, Tsenkova R. Aquaphotomics monitoring of strawberry fruit during cold storage - A comparison of two cooling systems. Front Nutr 2022; 9:1058173. [PMID: 36570127 PMCID: PMC9780392 DOI: 10.3389/fnut.2022.1058173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to use aquaphotomics and near-infrared (NIR) spectroscopy to follow the changes in strawberries during cold storage in the refrigerator with an electric field generator (supercooling fridge, SCF) and without it (control fridge, CF). The NIR spectra of strawberries stored in these refrigerators were collected over the course of 15 days using a portable mini spectrometer and their weight was measured daily. The spectral data in the region of the first overtone of water (1,300-1,600 nm) were analyzed using aquaphotomics multivariate analysis. The results showed a decrease in weight loss of strawberries, but the loss of weight was significantly lower in SCF, compared to the CF. The reduction of weight loss due to exposure to an electric field was comparable to the use of coatings. The aquaphotomics analysis showed that the NIR spectra adequately captured changes in the fruit over the storage period, and that it is possible to predict how long the fruit spent in storage, regardless of the storage type. During aquaphotomics analysis, 19 water absorbance bands were found to be consistently repeating and to have importance for the description of changes in strawberries during cold storage. These bands defined the water spectral pattern (WASP), multidimensional biomarker that was used for the description of the state and dynamics of water in strawberries during time spent in storage. Comparison of WASPs of strawberries in CF and SCF showed that exposure to an electric field leads to a delay in ripening by around 3 days. This was evidenced by the increased amount of structural, strongly bound water and vapor-like trapped water in the strawberries stored in SCF. This particular state of water in strawberries stored in SCF was related to the hardening of the strawberry skin and prevention of moisture loss, in agreement with the results of significantly decreased weight loss.
Collapse
Affiliation(s)
- Jelena Muncan
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Sukritta Anantawittayanon
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | | - Roumiana Tsenkova
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Kobe, Japan,*Correspondence: Roumiana Tsenkova,
| |
Collapse
|
5
|
Pewan SB, Otto JR, Huerlimann R, Budd AM, Mwangi FW, Edmunds RC, Holman BWB, Henry MLE, Kinobe RT, Adegboye OA, Malau-Aduli AEO. Next Generation Sequencing of Single Nucleotide Polymorphic DNA-Markers in Selecting for Intramuscular Fat, Fat Melting Point, Omega-3 Long-Chain Polyunsaturated Fatty Acids and Meat Eating Quality in Tattykeel Australian White MARGRA Lamb. Foods 2021; 10:foods10102288. [PMID: 34681337 PMCID: PMC8535056 DOI: 10.3390/foods10102288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/14/2023] Open
Abstract
Meat quality data can only be obtained after slaughter when selection decisions about the live animal are already too late. Carcass estimated breeding values present major precision problems due to low accuracy, and by the time an informed decision on the genetic merit for meat quality is made, the animal is already dead. We report for the first time, a targeted next-generation sequencing (NGS) of single nucleotide polymorphisms (SNP) of lipid metabolism genes in Tattykeel Australian White (TAW) sheep of the MARGRA lamb brand, utilizing an innovative and minimally invasive muscle biopsy sampling technique for directly quantifying the genetic worth of live lambs for health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA), intramuscular fat (IMF), and fat melting point (FMP). NGS of stearoyl-CoA desaturase (SCD), fatty acid binding protein-4 (FABP4), and fatty acid synthase (FASN) genes identified functional SNP with unique DNA marker signatures for TAW genetics. The SCD g.23881050T>C locus was significantly associated with IMF, C22:6n-3, and C22:5n-3; FASN g.12323864A>G locus with FMP, C18:3n-3, C18:1n-9, C18:0, C16:0, MUFA, and FABP4 g.62829478A>T locus with IMF. These add new knowledge, precision, and reliability in directly making early and informed decisions on live sheep selection and breeding for health-beneficial n-3 LC-PUFA, FMP, IMF and superior meat-eating quality at the farmgate level. The findings provide evidence that significant associations exist between SNP of lipid metabolism genes and n-3 LC-PUFA, IMF, and FMP, thus underpinning potential marker-assisted selection for meat-eating quality traits in TAW lambs.
Collapse
Affiliation(s)
- Shedrach Benjamin Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- National Veterinary Research Institute, Private Mail Bag 01 Vom, Plateau State, Nigeria
| | - John Roger Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan;
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Alyssa Maree Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Felista Waithira Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Richard Crawford Edmunds
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | | | - Michelle Lauren Elizabeth Henry
- Gundagai Meat Processors, 2916 Gocup Road, South Gundagai, NSW 2722, Australia;
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robert Tumwesigye Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Oyelola Abdulwasiu Adegboye
- Public Health and Tropical Medicine Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia;
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- Correspondence: ; Tel.: +61-747-815-339
| |
Collapse
|