1
|
Cui Y, Qi J, Li J, Zhang Y, Yang X, Xin L, Niu L, Xu B, Qian Z, Zhu L, Liang R. Effects of dietary resveratrol supplementation in cattle on the anti-oxidative capacity and meat quality of beef steaks under high‑oxygen packaging. Meat Sci 2023; 204:109238. [PMID: 37301101 DOI: 10.1016/j.meatsci.2023.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The effects of dietary resveratrol supplementation on beef quality and antioxidant capacity under high‑oxygen packaging were studied. Twelve cattle were selected and fed a total mixed ration (Control, CON) or supplemented with resveratrol (5 g/cattle/day, RES) for 120 days. The antioxidant capacity and meat quality of beef under high‑oxygen modified atmosphere packaging (HiOx-MAP, 80%O2/20%CO2) and overwrap packaging (OW) were evaluated during storage. Compared to the CON, RES enhanced antioxidant enzyme activity in serum and muscle, and increased the expression of Nrf2 and its downstream target genes (P < 0.05), which decreased the lipid and protein oxidation of steaks during storage (P < 0.05). The RES resulted in a* values increasing throughout storage (P < 0.05) and lower MetMb% than CON steaks (P < 0.05) in HiOx-MAP. The water-holding capacity (WHC) was improved and Warner-Bratzler shear force (WBSF) was reduced (P < 0.05) in RES steaks during storage. Thus dietary resveratrol increased beef antioxidant capacity under HiOx-MAP and improved meat quality, and can be used as a potential method to elevate beef quality and reduce the oxidation under HiOx-MAP.
Collapse
Affiliation(s)
- Ying Cui
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Jiajing Qi
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Jiqiang Li
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Luo Xin
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Lebao Niu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Baochen Xu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Zhanyu Qian
- Shangdu Hengchang Co., Ltd., Caoxian, Shandong 274400, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
2
|
Silva A, Silva V, Pereira JE, Maltez L, Igrejas G, Valentão P, Falco V, Poeta P. Antimicrobial Resistance and Clonal Lineages of Escherichia coli from Food-Producing Animals. Antibiotics (Basel) 2023; 12:1061. [PMID: 37370379 DOI: 10.3390/antibiotics12061061] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Escherichia coli are one of the most important pathogenic bacteria readily found in the livestock and widely studied as an indicator that carries drug-resistant genes between humans, animals, and the environment. The use of antimicrobials in the food chain, particularly in food-producing animals, is recognized as a significant contributor to the development and spread of antimicrobial resistance (AMR) and resistance genes can be transferred from the farm through the food-chain. The objective of this review is to highlight the background of the antimicrobials use in food-producing animals, more specifically, to study clonal lineages and the resistance profiles observed in E. coli, as well as in extended spectrum beta-lactamases (ESBL) producing E. coli, in a set of food-production animals with greater relevance in food consumption, such as pigs, poultry, cattle, fish farming and rabbits. Regarding the prevalence of ESBL-producing E. coli among farm animals, high-to-moderate prevalence was observed, and the highest resistance rates to tetracycline and ampicillin was detected in different farms in all geographic regions. Worldwide pandemic clones and high-risk zoonotic E. coli clones have been identified in most food-producing animals, and some of these clones are already disseminated in different niches, such as the environment and humans. A better understanding of the epidemiology of E. coli and ESBL-producing E. coli in livestock is urgently needed. Animal production is one of the major causes of the antibiotic resistance problem worldwide and a One Health approach is needed.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - José Eduardo Pereira
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Virgílio Falco
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Rients EL, Deters EL, McGill JL, Belknap CR, Hansen SL. Effects of feeding a Saccharomyces cerevisiae fermentation product and ractopamine hydrochloride to finishing beef steers on growth performance, immune system, and muscle gene expression. J Anim Sci 2023; 101:skac311. [PMID: 36592754 PMCID: PMC9831109 DOI: 10.1093/jas/skac311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023] Open
Abstract
The objective of this study was to determine impacts on immune parameters, anti-oxidant capacity, and growth of finishing steers fed a Saccharomyces cerevisiae fermentation product (SCFP; NaturSafe; Diamond V, Cedar Rapids, IA) and ractopamine hydrochloride (RAC; Optaflexx; Elanco Animal Health, Greenfield, IN). Angus-crossbred steers (N = 288) from two sources were utilized in this 90-d study. Steers were blocked by source, stratified by initial body weight to pens of six steers, and pens randomly assigned to treatments (16 pens per treatment). Three treatments compared feeding no supplemental SCFP (control; CON) and supplemental SCFP for 57 d (SCFP57), and 29 d (SCFP29) before harvest. Supplementation of SCFP was 12 g per steer per d, and all steers were fed RAC at 300 mg per steer per d for 29 d before harvest. Blood samples were collected from3 steers per pen, and muscle samples were collected from 1 steer per pen at 57, 29 (start of RAC), and 13 (midRAC) days before harvest. Blood was analyzed from 2 steers per pen for ferric reducing anti-oxidant power (FRAP). Muscle gene expression of myokines, markers of anti-oxidant and growth signaling were assessed. Individual animal BW were also collected on 57, 29, 13, and 1 d before being harvested at a commercial facility (National Beef, Tama, IA). Data were analyzed using the Mixed procedure of SAS 9.4 (Cary, NC) with pen as the experimental unit. The model included fixed effects of treatment and group. Increased BW compared to CON was observed days -29, -13, and -1 in SCFP57 steers (P ≤ 0.05), with SCFP29 being intermediate days -13 and -1. Overall G:F was improved in SCFP29 and SCFP57 (P = 0.01). On day -29, FRAP was greater in SCFP57 than CON (P = 0.02). The percent of gamma delta T cells and natural killer cells in both SCFP29 and SCFP57 was greater than CON on day -13 (P = 0.02). There were no treatment × day effects for muscle gene expression measured (P ≥ 0.25). Interleukin 6 tended to decrease in SCFP29 and SCFP57 on day -13 (P = 0.10). No other treatment effects were observed for muscle gene expression. Muscle gene expression of interleukin 15 was increased (P = 0.01), and expression of interleukin 8 was decreased (P = 0.03) due to RAC feeding. Increased growth in SCFP-fed cattle may be related to changes in anti-oxidant capacity and the immune system.
Collapse
Affiliation(s)
- Emma L Rients
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Erin L Deters
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jodi L McGill
- Vet Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA
| | | | - Stephanie L Hansen
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Li J, Liang R, Mao Y, Yang X, Luo X, Qian Z, Zhang Y, Zhu L. Effect of dietary resveratrol supplementation on muscle fiber types and meat quality in beef cattle. Meat Sci 2022; 194:108986. [PMID: 36152602 DOI: 10.1016/j.meatsci.2022.108986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
In order to investigate the effect of dietary resveratrol supplementation on muscle fiber types and meat quality in beef cattle, a feeding experiment was undertaken. Longissimus lumborum, Psoas major and Semitendinosus muscles were collected 24 h post-mortem from two groups of cattle, which were fed with a total mixed ration (Control - CON) or supplemented with resveratrol (5 g/animal/day, RES) for 120 d before slaughter. The results showed that dietary resveratrol increased the gene expression of MyHC I and enhanced the proportion of type I fibers in three muscles. The cooking loss and Warner-Bratzler shear force of all muscles during aging for 21 days were decreased. However, the increased proportion of type I fibers resulted in a darker initial color, but did improve color stability, as the a* value of RES samples was lower initially but higher in the later stage of aging. This study indicates the supplementation potential of resveratrol for beef cattle for tenderness and color stability.
Collapse
Affiliation(s)
- Jiqiang Li
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Zhanyu Qian
- Shangdu Hengchang Co., Ltd., Caoxian, Shandong 274400, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
5
|
Ameliorative Potential of Resveratrol in Dry Eye Disease by Restoring Mitochondrial Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1013444. [PMID: 35664941 PMCID: PMC9162831 DOI: 10.1155/2022/1013444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Methods The mitochondrial dysfunction of HCE-2 human corneal epithelial cells was induced by high osmotic pressure exposure and treated with resveratrol (50 μM). Western blotting was used to detect the expression of the antioxidant proteins SOD2, GPx, and SIRT1, and flow cytometry was used to detect cell apoptosis and ROS production. The DED mouse model was induced by 0.2% benzalkonium chloride (BAC) and treated with resveratrol. The tear yield was measured by the phenol cotton thread test, the density of cup cells in the conjunctiva was measured by periodic acid-Schiff (PAS) staining, and the expression levels of SIRT1, GPx, and SOD2 in lacrimal glands were detected by Western blotting. Results In hypertonic conditions, the apoptosis of HCE-2 cells increased, the expression of the antioxidant proteins SOD2 and GPx decreased, ROS production increased, and the expression of SIRT1 protein, an essential regulator of mitochondrial function, was downregulated. Treatment with resveratrol reversed the mitochondrial dysfunction mediated by high osmotic pressure. In the DED mouse model, resveratrol treatment promoted tear production and goblet cell number in DED mice, decreased corneal fluorescein staining, upregulated SIRT1 expression, and induced SOD2 and GPx expression in DED mice. Conclusion Resveratrol alleviates mitochondrial dysfunction by promoting SIRT1 expression, thus reducing ocular surface injury in mice with dry eye. This study suggests a new path against DED.
Collapse
|