1
|
Lin D, Qiu Y, Zhou F, Li X, Deng S, Yang J, Chen Q, Cai G, Yang J, Wu Z, Zheng E. Genome-wide detection of multiple variants associated with teat number in French Yorkshire pigs. BMC Genomics 2024; 25:722. [PMID: 39054457 PMCID: PMC11271213 DOI: 10.1186/s12864-024-10611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Teat number is a vital reproductive trait in sows, crucial for providing immunity and nutrition to piglets during lactation. However, "missing heritability" in Single Nucleotide Polymorphism (SNP)-based Genome-Wide Association Studies (GWAS) has led to an increasing focus on structural variations in the genetic analysis of complex biological traits. RESULTS In this study, we generated a comprehensive CNV map in a population of French Yorkshire pigs (n = 644) and identified 429 CNVRs. Notably, 44% (189 CNVRs) of these were detected for the first time. Subsequently, we conducted GWAS for teat number in the French Yorkshire pig population using both 80K chip and its imputed data, as well as a GWAS analysis based on CNV regions (CNVR). Interestingly, 80K chip GWAS identified two SNPs located on Sus scrofa chromosome 5 (SSC5) that were simultaneously associated with Total Teat Number (TTN), Left Teat Number (LTN), and Right Teat Number (RTN). The leading SNP (WU_10.2_5_76130558) explained 3.33%, 2.69%, and 2.67% of the phenotypic variance for TTN, LTN, and RTN, respectively. Moreover, through imputed GWAS, we successfully identified 30 genetic variants associated with TTN located within the 73.22 -73.30 Mb region on SSC5. The two SNPs identified in the 80K chip GWAS were also located in this region. In addition, CNVR-based GWAS revealed three significant CNVRs associated with TTN. Finally, through gene annotation, we pinpointed two candidate genes, TRIM66 and PRICKLE1, which are related to diverse processes such as breast cancer and abnormal vertebral development. CONCLUSIONS Our research provides an in-depth analysis of the complex genetic structure underlying teat number, contributing to the genetic enhancement of sows with improved reproductive performance and, ultimately, bolstering the economic benefits of swine production enterprises.
Collapse
Affiliation(s)
- Danyang Lin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Fuchen Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Xuehua Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Shaoxiong Deng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Jisheng Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Qiaoer Chen
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Yan M, Li L, Huang Y, Tang X, Shu Y, Cui D, Yu C, Hu Y, Ma J, Xiao S, Guo Y. Investigation on muscle fiber types and meat quality and estimation of their heritability and correlation coefficients with each other in four pig populations. Anim Sci J 2024; 95:e13915. [PMID: 38303133 DOI: 10.1111/asj.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
The aim of this study was to investigate the muscle fiber types and meat quality in four populations and estimate the heritability and correlation coefficients of those traits in Shanxia long black pig (SX). In this study, a total of 318 pigs were recorded for 16 traits of the muscle fiber types and meat quality in four populations, including 256 individuals from the new breed SX. The population had a significant effect on all recorded traits, and the meat quality of the Lulai black pig was better than the remaining populations. The heritability (h2 ) of meat quality traits was from 0.06 (pH at 24 h) to 0.47 (shearing force), and the muscle fiber types belonged to the traits with low to medium heritability. The density of total fiber had the highest h2 (0.40), while the percentage of type IIA had the lowest h2 (0.04). Most traits are phenotypically correlated with each other, but only a small proportion of traits are genetically correlated with each other. None fiber type genetically correlated with meat quality significantly, because the genetic correlation coefficients had large standard errors. These results provided some insights into genetic improvements for the meat quality in pig breeds and also indicated that the parameters of muscle fiber characteristics can explain parts of the variation in meat quality.
Collapse
Affiliation(s)
- Min Yan
- National Key Laboratory for Pig Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Longyun Li
- National Key Laboratory for Pig Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Yizhong Huang
- National Key Laboratory for Pig Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Xi Tang
- National Key Laboratory for Pig Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Yujie Shu
- National Key Laboratory for Pig Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Dengshuai Cui
- National Key Laboratory for Pig Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Chuangang Yu
- National Key Laboratory for Pig Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Yongqiang Hu
- National Key Laboratory for Pig Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Junwu Ma
- National Key Laboratory for Pig Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Shijun Xiao
- National Key Laboratory for Pig Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Yuanmei Guo
- National Key Laboratory for Pig Genetic Improvement and Germplasm Innovation, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| |
Collapse
|
3
|
Zhou F, Wang S, Qin H, Zeng H, Ye J, Yang J, Cai G, Wu Z, Zhang Z. Genome-wide association analysis unveils candidate genes and loci associated with aplasia cutis congenita in pigs. BMC Genomics 2023; 24:701. [PMID: 37990155 PMCID: PMC10664689 DOI: 10.1186/s12864-023-09803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Aplasia cutis congenita (ACC) is a rare genetic disorder characterized by the localized or widespread absence of skin in humans and animals. Individuals with ACC may experience developmental abnormalities in the skeletal and muscular systems, as well as potential complications. Localized and isolated cases of ACC can be treated through surgical and medical interventions, while extensive cases of ACC may result in neonatal mortality. The presence of ACC in pigs has implications for animal welfare. It contributes to an elevated mortality rate among piglets at birth, leading to substantial economic losses in the pig farming industry. In order to elucidate candidate genetic loci associated with ACC, we performed a Genome-Wide Association Study analysis on 216 Duroc pigs. The primary goal of this study was to identify candidate genes that associated with ACC. RESULTS This study identified nine significant SNPs associated with ACC. Further analysis revealed the presence of two quantitative trait loci, 483 kb (5:18,196,971-18,680,098) on SSC 5 and 159 kb (13:20,713,440-207294431 bp) on SSC13. By annotating candidate genes within a 1 Mb region surrounding the significant SNPs, a total of 11 candidate genes were identified on SSC5 and SSC13, including KRT71, KRT1, KRT4, ITGB7, CSAD, RARG, SP7, PFKL, TRPM2, SUMO3, and TSPEAR. CONCLUSIONS The results of this study further elucidate the potential mechanisms underlying and genetic architecture of ACC and identify reliable candidate genes. These results lay the foundation for treating and understanding ACC in humans.
Collapse
Affiliation(s)
- Fuchen Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Shenghui Wang
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Haojun Qin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Haiyu Zeng
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Jian Ye
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.
- Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527400, P.R. China.
| | - Zebin Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.
| |
Collapse
|
4
|
Zhong L, Zheng M, Huang Y, Jiang T, Yang B, Huang L, Ma J. An atlas of expression quantitative trait loci of microRNAs in longissimus muscle of eight-way crossbred pigs. J Genet Genomics 2023; 50:398-409. [PMID: 36822265 DOI: 10.1016/j.jgg.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of myocyte development and traits, yet insight into the genetic basis of variation in miRNA expression is still limited. Here, we present a systematic analysis of expression quantitative trait loci (eQTL) for miRNA profiling in longissimus muscle of pigs from an eight-breed crossed heterogeneous population. By integrating the whole-genome sequencing and miRNAomics data, we map 54 cis- and 292 trans-eQTLs at high resolution that are associated with the expression of 54 and 92 miRNAs, respectively. Twenty-three trans-acting loci are identified to affect the expression of nine myomiRs (known muscle-specific miRNAs). MiRNAs in mammalian conserved miRNA clusters are found to be subjected to regulation by shared cis-eQTLs, while the expression of mature miRNA-5p/-3p counterparts is more likely to be regulated by different cis-eQTLs. Fine mapping and bioinformatics analyses pinpoint the peak cis-eSNP of miR-4331-5p, rs344650810, which is located in its seed region, as a causal variant for the changes in expression and function of this miRNA. Additionally, rs344650810 is significantly (P < 0.01) correlated with the density and percentage of type I muscle fibers. Altogether, this study provides a comprehensive atlas of miRNA-eQTLs in porcine skeletal muscle and new insights into regulatory mechanisms of miRNA expression.
Collapse
Affiliation(s)
- Liepeng Zhong
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Min Zheng
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yizhong Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Tao Jiang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Junwu Ma
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|