1
|
Zhao Y, Xiang C, Roy BC, Bruce HL, Blecker C, Zhang Y, Liu C, Zhang D, Chen L, Huang C. Apoptosis and its role in postmortem meat tenderness: A comprehensive review. Meat Sci 2025; 219:109652. [PMID: 39265386 DOI: 10.1016/j.meatsci.2024.109652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Tenderness is considered a crucial attribute of postmortem meat quality, directly influencing consumers' preferences and industrial economic benefits. The degradation of myofibrillar proteins by endogenous enzymes within muscle fibers is believed to be the most effective pathway for meat tenderization. After animals are slaughtered and exsanguinated, there is a significant accumulation of reactive oxygen species (ROS), and a dramatic depletion of adenosine triphosphate (ATP) in muscle, leading to inevitable cell death. Caspases are activated in postmortem muscle cells, which disrupt the cell structure and improve meat tenderness through protein hydrolysis. In this review, we systematically summarized the three primary types of cell death studied in postmortem muscle: apoptosis, autophagy and necrosis. Furthermore, we emphasized the molecular mechanisms of apoptosis and its corresponding apoptotic pathways (mitochondrial apoptosis, death receptors, and endoplasmic reticulum stress) that affect meat tenderness during muscle conversion to meat. Additionally, factors affecting apoptosis were comprehensively discussed, such as ROS, heat shock proteins, calcium (Ca2+)/calpains, and Bcl-2 family proteins. Finally, this comprehensive review of existing research reveals that apoptosis is mainly mediated by the mitochondrial pathway. This ultimately leads to myofibrillar proteins degradation through caspase activation, improving meat tenderness. This review summarizes the research progress on postmortem muscle apoptosis and its molecular mechanisms in meat tenderization. We hope this will enhance understanding of postmortem meat tenderness and provide a theoretical basis for meat tenderization techniques development in the future.
Collapse
Affiliation(s)
- Yingxin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Can Xiang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium
| | - Yanyan Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Chongxin Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Caiyan Huang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium.
| |
Collapse
|
2
|
Wang J, Zhao R, Liu Y, Hu T, Li X, He L, Guo Z, Chen C, Shi X. The correlation between Smac, IAPs and mitochondrial apoptosis, muscle tenderness during postmortem aging of Oula Tibetan sheep meat. Food Chem X 2024; 24:101887. [PMID: 39498258 PMCID: PMC11532436 DOI: 10.1016/j.fochx.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Oula Tibetan sheep meat has rich nutritional value but relatively poor tenderness. Recently, apoptosis of muscle cells has gradually become a research hotspot for improving meat tenderness during postmortem aging. Smac can promote the decrease of IAPs expression in tumor cells, thereby inducing mitochondrial apoptosis. However, the relationship between Smac, IAPs and mitochondrial apoptosis, muscle tenderness during postmortem meat aging is still unclear. Thus, the aim of this work was to explore the relationship between Smac, IAPs and mitochondrial apoptosis as well as muscle tenderness during postmortem meat aging. Smac concentration, IAPs concentration, pH value, ATP content, SDH activity, MPTP opening degree, MMP, caspase-3/9 activity, apoptotic rate, MFI and shear force value of Oula Tibetan sheep meat were measured at different aging times and correlation analysis was performed. Correlation analysis revealed that Smac, IAPs were markedly related to mitochondrial apoptosis and muscle tenderness during postmortem aging of Tibetan sheep meat. The results suggest that Smac may regulate IAPs to promote mitochondrial apoptosis and muscle tenderization in Oula Tibetan sheep meat during postmortem aging.
Collapse
Affiliation(s)
- Jingyu Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruina Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tieying Hu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolong Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xixiong Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Mendonça MLM, Carvalho MR, Romanenghi RB, Santos DSD, Filiú WFO, Pagan LU, Okoshi K, Okoshi MP, Oliveira RJ, Oliveira‐Junior SA, Martinez PF. Impact of combined intermittent fasting and high-intensity interval training on apoptosis and atrophy signaling in rat fast- and slow-twitch muscles. Physiol Rep 2024; 12:e16181. [PMID: 39138135 PMCID: PMC11321907 DOI: 10.14814/phy2.16181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
This study aimed to evaluate the influence of combined intermittent fasting (IF) and high-intensity interval training (HIIT) on morphology, caspase-independent apoptosis signaling pathway, and myostatin expression in soleus and gastrocnemius (white portion) muscles from healthy rats. Sixty-day-old male Wistar rats (n = 60) were divided into four groups: control (C), IF, high-intensity-interval training (T), and high-intensity-interval training and intermittent fasting (T-IF). The C and T groups received ad libitum chow daily; IF and T-IF received the same standard chow every other day. Animals from T and T-IF underwent a HIIT protocol five times a week for 12 weeks. IF reduced gastrocnemius mass and increased pro-apoptotic proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG) in soleus and cleaved-to-non-cleaved PARP-1 ratio and myostatin expression in gastrocnemius white portion. HIIT increased AIF and apoptosis repressor with caspase recruitment domain expression in soleus and cleaved-to-total PARP-1 ratio in gastrocnemius muscle white portion. The combination of IF and HIIT reduced fiber cross-sectional area in both muscles, increased EndoG and AIF expression, and decreased cleaved-to-non-cleaved PARP-1 ratio in gastrocnemius muscle white portion. Muscle responses to IF and HIIT are directly impacted by the muscle fiber type composition and are modulated, at least in part, by myostatin and caspase-independent apoptosis signaling.
Collapse
Affiliation(s)
- Maria Lua M. Mendonça
- Striated Muscle Study LaboratoryFederal University of Mato Grosso do Sul (UFMS)Campo GrandeMato Grosso do SulBrazil
| | - Marianna R. Carvalho
- Striated Muscle Study LaboratoryFederal University of Mato Grosso do Sul (UFMS)Campo GrandeMato Grosso do SulBrazil
| | - Rodrigo B. Romanenghi
- Striated Muscle Study LaboratoryFederal University of Mato Grosso do Sul (UFMS)Campo GrandeMato Grosso do SulBrazil
| | - Diego S. D. Santos
- Striated Muscle Study LaboratoryFederal University of Mato Grosso do Sul (UFMS)Campo GrandeMato Grosso do SulBrazil
| | - Wander F. O. Filiú
- Faculty of Pharmaceutical Sciences, Food and NutritionFederal University of Mato Grosso do Sul (UFMS)Campo GrandeMato Grosso do SulBrazil
| | - Luana Urbano Pagan
- Internal Medicine DepartmentBotucatu Medical School, Sao Paulo State University (UNESP)BotucatuSao PauloBrazil
| | - Katashi Okoshi
- Internal Medicine DepartmentBotucatu Medical School, Sao Paulo State University (UNESP)BotucatuSao PauloBrazil
| | - Marina P. Okoshi
- Internal Medicine DepartmentBotucatu Medical School, Sao Paulo State University (UNESP)BotucatuSao PauloBrazil
| | - Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), School of Medicine (FAMED)Federal University of Mato Grosso do Sul (UFMS)Campo GrandeMato Grosso do SulBrazil
| | - Silvio A. Oliveira‐Junior
- Striated Muscle Study LaboratoryFederal University of Mato Grosso do Sul (UFMS)Campo GrandeMato Grosso do SulBrazil
| | - Paula F. Martinez
- Striated Muscle Study LaboratoryFederal University of Mato Grosso do Sul (UFMS)Campo GrandeMato Grosso do SulBrazil
| |
Collapse
|
4
|
Yu Q, Gu X, Liu Q, Wen R, Sun C. Effect of wet-aging on meat quality and exudate metabolome changes in different beef muscles. Food Res Int 2024; 184:114260. [PMID: 38609237 DOI: 10.1016/j.foodres.2024.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
The aim of this study was to evaluate meat quality and changes in the meat exudate metabolome of different beef muscles (5 d postmortem, longissimus lumborum and psoas major muscles) during wet-aging (additional 3, 7, 14, 21, and 28 d of aging). Shear force of meat declined significantly (P < 0.001) with aging, meanwhile, increased myofibril fragmentation index, lipid and protein oxidation with aging were observed (P < 0.01). Psoas major (PM) showed significantly higher (P < 0.05) purge loss, centrifugal loss, and cooking loss, as well as higher tenderness and more severe lipid and protein oxidation (P < 0.01) than longissimus lumborum (LL) during aging. Principal component analysis of the metabolomic profiles revealed distinct clusters according to the period of aging and the type of muscle simultaneously. Overabundant amino acids, peptides, oxidized fatty acids, and hydroxy fatty acids were found in long-term aged meat exudates, and forty metabolites were significantly correlated with meat quality characteristics. Fifty-nine metabolites were significantly affected by muscle type. These results demonstrated the potential possibility of evaluating meat quality using meat exudate metabolomics.
Collapse
Affiliation(s)
- Qianqian Yu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Xuejing Gu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Qianqian Liu
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China
| | - Rongxin Wen
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China.
| | - Chengfeng Sun
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai 264005, Shandong, China.
| |
Collapse
|
5
|
Zou B, Jia F, Ji L, Li X, Dai R. Effects of mitochondria on postmortem meat quality: characteristic, isolation, energy metabolism, apoptosis and oxygen consumption. Crit Rev Food Sci Nutr 2023; 64:11239-11262. [PMID: 37452658 DOI: 10.1080/10408398.2023.2235435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Meat quality holds significant importance for both consumers and meat producers. Various factors influence meat quality, and among them, mitochondria play a crucial role. Recent studies have indicated that mitochondria can sustain their functions and viability for a certain duration in postmortem muscles. Consequently, mitochondria have an impact on oxygen consumption, energy metabolism, and apoptotic processes, which in turn affect myoglobin levels, oxidative stress, meat tenderness, fat oxidation, and protein oxidation. Ultimately, these factors influence the color, tenderness, and flavor of meat. However, there is a dearth of comprehensive summaries addressing the effects of mitochondria on postmortem muscle physiology and meat quality. Therefore, this review aims to describe the characteristics of muscle mitochondria and their potential influence on muscle. Additionally, a suitable method for isolating mitochondria is presented. Lastly, the review emphasizes the regulation of oxygen consumption, energy metabolism, and apoptosis by postmortem muscle mitochondria, and provides an overview of relevant research and recent advancements. The ultimate objective of this review is to elucidate the underlying mechanisms through which mitochondria impact meat quality.
Collapse
Affiliation(s)
- Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Lin Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
6
|
Waller BE, Whitewood TA, Woerner DR, Garcia SR, Wulf DM. Effects of the F94L myostatin gene mutation in beef × dairy crossed cattle on strip loin steak dimensionality, shear force, and sensory attributes. J Anim Sci 2023; 101:skad325. [PMID: 37756513 PMCID: PMC10629441 DOI: 10.1093/jas/skad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Carcasses (n = 115) from steers resulting from the mating of four Limousin × Angus sires heterozygous for the F94L myostatin mutation to Jersey, Jersey × Holstein, and Holstein dams were utilized to evaluate the effects of one copy of the F94L allele on strip loin dimensionality, Warner-Bratzler shear force and slice shear force, and sensory panel ratings. In phase I of a two-phase study, 57 carcasses from two sires were utilized to obtain samples of longissimus dorsi (LD), psoas major (PM), gluteus medsius (GM), semitendinosus (ST), serratus ventralis, triceps brachii, and biceps femori muscles, which were vacuum packaged, aged until 10 d postmortem, and frozen. Frozen strip loins were cut into 14, 2.5-cm-thick steaks each, and individual strip loin steaks were imaged at a fixed height on a gridded background and processed through image analysis software. In phase II, to obtain a greater power of test for LD palatability attributes, 58 additional carcasses from three sires were utilized to obtain LD samples only for sensory panel and shear force analysis. Cooked steak sensory attributes evaluated by trained panelists were tenderness, juiciness, beef flavor, browned flavor, roasted flavor, umami flavor, metallic flavor, fat-like flavor, buttery flavor, sour flavor, oxidized flavor, and liver-like flavor. In strip loin steaks from carcasses with one F94L allele, LD muscle area was larger in steaks 4, 5, 7, 8, and 9, and steaks 1, 6, 7, and 9 were less angular than those from carcasses with no F94L allele (P < 0.05). Of the seven muscles observed, there were no shear force differences between F94L genotypes (P > 0.20). F94L genotype did not affect sensory panel ratings of LD and GM steaks (P > 0.07). Cooked ST steaks from carcasses with one F94L rated lower in fat-like flavor compared to those from carcasses with no F94L allele (P = 0.035). Cooked PM steaks from carcasses with one F94L allele rated lower in juiciness, fat-like flavor, buttery flavor, and umami flavor compared to those with no copies of the F94L (P < 0.04). In summary, one copy of the F94L allele utilized in beef × dairy cross steers improved strip loin steak dimensionality, did not affect cooked steak tenderness across seven muscles, and decreased fat-associated flavors in the PM and ST. The use of F94L homozygous terminal beef sires would be an easily implemented strategy for dairy producers to improve steak portion size and shape in carcasses from nonreplacement calves.
Collapse
Affiliation(s)
- Bryanne E Waller
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Tatum A Whitewood
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Dale R Woerner
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Samuel R Garcia
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Duane M Wulf
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|