1
|
Chiu YC, Lee SW, Liu CW, Lan TY, Wu LSH. Relationship between gut microbiota and lung function decline in patients with chronic obstructive pulmonary disease: a 1-year follow-up study. Respir Res 2022; 23:10. [PMID: 35033061 PMCID: PMC8760664 DOI: 10.1186/s12931-022-01928-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease characterized by a persistent limitation in airflow. Gut microbiota is closely correlated with lung inflammation. However, gut microbiota has not been studied in patients with declining lung function, due to chronic lung disease progression. SUBJECTS AND METHODS Stool samples were obtained from 55 patients with COPD that were in stable condition at enrolment (stage 1) and at a 1-year follow-up (stage 2). After extracting stool DNA, we performed next generation sequencing to analyse the distribution of gut microbiota. RESULTS Patients were divided to control and declining lung function groups, based on whether the rate of forced expiratory volume in 1 s (FEV1) had declined over time. An alpha diversity analysis of initial and follow-up stool samples showed a significant difference in the community richness of microbiota in the declining function group, but not in the control group. At the phylum level, Bacteroidetes was more abundant in the control group and Firmicutes was more abundant in the declining function group. The Alloprevotella genus was more abundant in the control group than in the declining function group. At 1-year follow-up, the mean proportions of Acinetobacter and Stenotrophomonas significantly increased in the control and declining function groups, respectively. CONCLUSION Some community shifts in gut microbiota were associated with lung function decline in COPD patients under regular treatment. Future studies should investigate the mechanism underlying alterations in lung function, due to changes in gut bacterial communities, in COPD.
Collapse
Affiliation(s)
- Yu-Chi Chiu
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan.,Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Shih-Wei Lee
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chi-Wei Liu
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Tzuo-Yun Lan
- Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 404, Taiwan. .,Center of Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Children's Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Orozco-Levi M, Colmenares-Mejía C, Ruíz J, Valencia-Barón YD, Ramírez-Sarmiento A, Quintero-Lesmes DC, Serrano NC. Effect of Antioxidants in the Treatment of COPD Patients: Scoping Review. J Nutr Metab 2021; 2021:7463391. [PMID: 34868678 PMCID: PMC8635900 DOI: 10.1155/2021/7463391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, preventable, treatable lung disease characterized by persistent respiratory symptoms and airflow limitation and multiorgan impact. This affects the nutritional status of patients and requires multidimensional interventions including nutritional interventions according to individual metabolic needs. Our scoping review determined the effects of antioxidants in the treatment of COPD patients and their role in the decrease in the probability of exacerbations, hospital readmissions, and changes in lung function. The sources MEDLINE, LILACS, and Google Scholar were consulted and 19 studies were selected. The most indicated antioxidants are N-Acetylcysteine, vitamins E and D, and Zinc. Other antioxidants from plants or fruits extracts are also being investigated. The beneficial effect of antioxidants in stable or exacerbated patients is not clear, but theoretical and biological arguments of benefit justify lines of research that specify the impact on reducing oxidative stress and negative effects in COPD.
Collapse
Affiliation(s)
- Mauricio Orozco-Levi
- Servicio de Neumología, Fundación Cardiovascular de Colombia, Hospital Internacional de Colombia, Calle 155A No. 23-58 Floridablanca Santander/Valle de Menzuly Km 7 Piedecuesta, Santander, Colombia
| | - Claudia Colmenares-Mejía
- Centro de Investigaciones Fundación Cardiovascular de Colombia, Calle 155A No. 23-58 Floridablanca, Santander, Colombia
| | - Jessica Ruíz
- Centro de Investigaciones Fundación Cardiovascular de Colombia, Calle 155A No. 23-58 Floridablanca, Santander, Colombia
| | - Yurley Dayanna Valencia-Barón
- Centro de Investigaciones Fundación Cardiovascular de Colombia, Calle 155A No. 23-58 Floridablanca, Santander, Colombia
| | - Alba Ramírez-Sarmiento
- Servicio de Neumología, Fundación Cardiovascular de Colombia, Hospital Internacional de Colombia, Calle 155A No. 23-58 Floridablanca Santander/Valle de Menzuly Km 7 Piedecuesta, Santander, Colombia
| | | | - Norma C. Serrano
- Centro de Investigaciones Fundación Cardiovascular de Colombia, Calle 155A No. 23-58 Floridablanca, Santander, Colombia
| |
Collapse
|
3
|
Gea J, Sancho-Muñoz A, Chalela R. Nutritional status and muscle dysfunction in chronic respiratory diseases: stable phase versus acute exacerbations. J Thorac Dis 2018; 10:S1332-S1354. [PMID: 29928517 PMCID: PMC5989104 DOI: 10.21037/jtd.2018.02.66] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 12/22/2022]
Abstract
Nutritional abnormalities are frequent in different chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis, cystic fibrosis (CF), interstitial fibrosis and lung cancer, having important clinical consequences. However, nutritional abnormalities often remained underdiagnosed due to the relative lack of awareness of health professionals. Therefore, systematic anthropometry or even better, assessment of body composition, should be performed in all patients with chronic respiratory conditions, especially following exacerbation periods when malnutrition becomes more accentuated. Nutritional abnormalities very often include the loss of muscle mass, which is an important factor for the occurrence of muscle dysfunction. The latter can be easily detected with the specific assessment of muscle strength and endurance, and also negatively influences patients' quality of life and prognosis. Both nutritional abnormalities and muscle dysfunction result from the interaction of several factors, including tobacco smoking, low physical activity-sedentarism, systemic inflammation and the imbalance between energy supply and requirements, which essentially lead to a negative balance between protein breakdown and synthesis. Therapeutic approaches include improvements in lifestyle, nutritional supplementation and training. Anabolic drugs may be administered in some cases.
Collapse
Affiliation(s)
- Joaquim Gea
- Respiratory Medicine Department, Hospital del Mar (IMIM), DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Spain
| | - Antoni Sancho-Muñoz
- Respiratory Medicine Department, Hospital del Mar (IMIM), DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Spain
| | - Roberto Chalela
- Respiratory Medicine Department, Hospital del Mar (IMIM), DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
4
|
Barreiro E, Jaitovich A. Muscle atrophy in chronic obstructive pulmonary disease: molecular basis and potential therapeutic targets. J Thorac Dis 2018; 10:S1415-S1424. [PMID: 29928523 DOI: 10.21037/jtd.2018.04.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) experience several systemic manifestations such skeletal muscle dysfunction with and without muscle mass loss. Moreover, frequent comorbidities such as nutritional abnormalities, heart failure, and pulmonary hypertension, which are frequently associated with COPD may further contribute to skeletal muscle mass loss and dysfunction. Muscle dysfunction impairs the patients' exercise capacity and quality of life as daily life activities may be hampered by this problem. Importantly, impaired muscle function and mass loss have been shown to impact negatively on the patients' prognosis and survival in several studies. Thus, this is a major clinical problem that deserves special attention in clinical settings. During the course of exacerbations muscle mass loss takes place, hence aggravating muscle status and performance even after hospital discharge, especially in the frequently exacerbator patients. Several factors and biological mechanisms are involved in the etiology of COPD muscle dysfunction. The biological mechanisms identified so far offer a niche for therapeutic interventions in the patients. In the current review, a general overview of the most relevant etiologic factors and their target biological mechanisms through which muscle mass loss and dysfunction take place in both the respiratory and lower limb muscles in COPD patients is provided. We conclude that more clinical research is still needed targeted to test several therapeutic interventions. Given its prognostic value, the assessment of skeletal muscle dysfunction should be included in the routine evaluation of patients with chronic respiratory disorders and in critical care settings.
Collapse
Affiliation(s)
- Esther Barreiro
- Respiratory Medicine Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
5
|
Gea J, Casadevall C, Pascual S, Orozco-Levi M, Barreiro E. Clinical management of chronic obstructive pulmonary disease patients with muscle dysfunction. J Thorac Dis 2016; 8:3379-3400. [PMID: 28066619 DOI: 10.21037/jtd.2016.11.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Muscle dysfunction is frequently observed in chronic obstructive pulmonary disease (COPD) patients, contributing to their exercise limitation and a worsening prognosis. The main factor leading to limb muscle dysfunction is deconditioning, whereas respiratory muscle dysfunction is mostly the result of pulmonary hyperinflation. However, both limb and respiratory muscles are also influenced by other negative factors, including smoking, systemic inflammation, nutritional abnormalities, exacerbations and some drugs. Limb muscle weakness is generally diagnosed through voluntary isometric maneuvers such as handgrip or quadriceps muscle contraction (dynamometry); while respiratory muscle loss of strength is usually recognized through a decrease in maximal static pressures measured at the mouth. Both types of measurements have validated reference values. Respiratory muscle strength can also be evaluated determining esophageal, gastric and transdiaphragmatic maximal pressures although there is a lack of widely accepted reference equations. Non-volitional maneuvers, obtained through electrical or magnetic stimulation, can be employed in patients unable to cooperate. Muscle endurance can also be assessed, generally using repeated submaximal maneuvers until exhaustion, but no validated reference values are available yet. The treatment of muscle dysfunction is multidimensional and includes improvement in lifestyle habits (smoking abstinence, healthy diet and a good level of physical activity, preferably outside), nutritional measures (diet supplements and occasionally, anabolic drugs), and different modalities of general and muscle training.
Collapse
Affiliation(s)
- Joaquim Gea
- Servei de Pneumologia, Hospital del Mar - IMIM, Experimental Sciences and Health Department (DCEXS), Universitat Pompeu Fabra, CIBERES, ISC III, Barcelona, Catalonia, Spain
| | - Carme Casadevall
- Servei de Pneumologia, Hospital del Mar - IMIM, Experimental Sciences and Health Department (DCEXS), Universitat Pompeu Fabra, CIBERES, ISC III, Barcelona, Catalonia, Spain
| | - Sergi Pascual
- Servei de Pneumologia, Hospital del Mar - IMIM, Experimental Sciences and Health Department (DCEXS), Universitat Pompeu Fabra, CIBERES, ISC III, Barcelona, Catalonia, Spain
| | - Mauricio Orozco-Levi
- Department of Respiratory, Cardiovascular Foundation from Colombia Floridablanca, Santander, Colombia, CIBERES, ISC III, Barcelona, Catalonia, Spain
| | - Esther Barreiro
- Servei de Pneumologia, Hospital del Mar - IMIM, Experimental Sciences and Health Department (DCEXS), Universitat Pompeu Fabra, CIBERES, ISC III, Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
A minor but deadly surgery of colonic polypectomy in an elderly and fragile patient: a case report and the review of literature. World J Surg Oncol 2016; 14:252. [PMID: 27669818 PMCID: PMC5037652 DOI: 10.1186/s12957-016-1010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/21/2016] [Indexed: 12/02/2022] Open
Abstract
Background Epithelial dysplasia and adenomatous polyps of colorectum are precancerous lesions. Surgical removal is still one of the important treatment approaches for colorectal polyps. Case presentation A male patient over 78 years was admitted due to bloody stool and abdominal pain. Colonoscopic biopsy showed a high-grade epithelial dysplasia in an adenomatous polyp of sigmoid colon. Anemia, COPD, ischemic heart disease (IHD), arrhythmias, and hypoproteinemia were comorbidities. The preoperative preparation was carefully made consisting of oral nutritional supplements (ONS), blood transfusion, cardiorespiratory management, and hemostatic therapy. However, his illness did not improve but deteriorate mainly due to polyp rebleeding during preparative period. The open polypectomy was performed within 60 min under epidural anesthesia. Postoperative treatments included oxygen inhalation, bronchodilation, parenteral and enteral nutrition, human serum albumin, antibiotics, and blood transfusion. Unluckily, these did not significantly facilitate to surgical recovery on account of severe comorbidities and complications. The most serious complications were colonic leakage and secondary abdominal severe infection. The patient finally gave up treatment due to multiple organ dysfunction syndromes. Conclusions The polypectomy for colonic polyp is a seemingly minor but potentially deadly surgery for patients with severe comorbidities, and prophylactic ostomy should be considered for the safety.
Collapse
|
7
|
Barreiro E, Gea J. Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease. Chron Respir Dis 2016; 13:297-311. [PMID: 27056059 DOI: 10.1177/1479972316642366] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) will be a major leading cause of death worldwide in the near future. Weakness and atrophy of the quadriceps are associated with a significantly poorer prognosis and increased mortality in COPD. Despite that skeletal muscle dysfunction may affect both respiratory and limb muscle groups in COPD, the latter are frequently more severely affected. Therefore, muscle dysfunction in COPD is a common systemic manifestation that should be evaluated on routine basis in clinical settings. In the present review, several aspects of COPD muscle dysfunction are being reviewed, with special emphasis on the underlying biological mechanisms. Figures on the prevalence of COPD muscle dysfunction and the most relevant etiologic contributors are also provided. Despite that ongoing research will shed light into the contribution of additional mechanisms to COPD muscle dysfunction, current knowledge points toward the involvement of a wide spectrum of cellular and molecular events that are differentially expressed in respiratory and limb muscles. Such mechanisms are thoroughly described in the article. The contribution of epigenetic events on COPD muscle dysfunction is also reviewed. We conclude that in view of the latest discoveries, from now, on new avenues of research should be designed to specifically target cellular mechanisms and pathways that impair muscle mass and function in COPD using pharmacological strategies and/or exercise training modalities.
Collapse
Affiliation(s)
- Esther Barreiro
- Department of Respiratory Medicine, Muscle and Respiratory System Research Unit (URMAR), Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Barcelona, Spain Department of Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Joaquim Gea
- Department of Respiratory Medicine, Muscle and Respiratory System Research Unit (URMAR), Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Barcelona, Spain Department of Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
8
|
Lopez-Campos JL, Calero-Acuña C, Lopez-Ramirez C, Abad-Arranz M, Márquez-Martín E, Ortega-Ruiz F, Arellano E. Implications of the inflammatory response for the identification of biomarkers of chronic obstructive pulmonary disease. Biomark Med 2016; 10:109-22. [PMID: 26808692 DOI: 10.2217/bmm.15.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by both local and systemic inflammation. Because inflammation plays a critical role in the development, course and severity of COPD, inflammatory markers have the potential to improve the current diagnostic and prognostic approaches. Local inflammation in COPD is characterized by an infiltration of inflammatory cells, with an increased expression of cytokines, chemokines, enzymes, growth factors and adhesion molecules. Systemic low-grade inflammation is another common but nonspecific finding in COPD. Exacerbations of COPD are acute clinical events accompanied by an exaggerated inflammatory response. Future investigations in the field of COPD biomarkers should take into account different study designs and biochemical assays, disease course and duration, variations in symptom severity and timing of measurement.
Collapse
Affiliation(s)
- Jose Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Calero-Acuña
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilia Lopez-Ramirez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - María Abad-Arranz
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - Eduardo Márquez-Martín
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| | - Francisco Ortega-Ruiz
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Arellano
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
9
|
Gea J, Pascual S, Casadevall C, Orozco-Levi M, Barreiro E. Muscle dysfunction in chronic obstructive pulmonary disease: update on causes and biological findings. J Thorac Dis 2015; 7:E418-38. [PMID: 26623119 DOI: 10.3978/j.issn.2072-1439.2015.08.04] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Respiratory and/or limb muscle dysfunction, which are frequently observed in chronic obstructive pulmonary disease (COPD) patients, contribute to their disease prognosis irrespective of the lung function. Muscle dysfunction is caused by the interaction of local and systemic factors. The key deleterious etiologic factors are pulmonary hyperinflation for the respiratory muscles and deconditioning secondary to reduced physical activity for limb muscles. Nonetheless, cigarette smoke, systemic inflammation, nutritional abnormalities, exercise, exacerbations, anabolic insufficiency, drugs and comorbidities also seem to play a relevant role. All these factors modify the phenotype of the muscles, through the induction of several biological phenomena in patients with COPD. While respiratory muscles improve their aerobic phenotype (percentage of oxidative fibers, capillarization, mitochondrial density, enzyme activity in the aerobic pathways, etc.), limb muscles exhibit the opposite phenotype. In addition, both muscle groups show oxidative stress, signs of damage and epigenetic changes. However, fiber atrophy, increased number of inflammatory cells, altered regenerative capacity; signs of apoptosis and autophagy, and an imbalance between protein synthesis and breakdown are rather characteristic features of the limb muscles, mostly in patients with reduced body weight. Despite that significant progress has been achieved in the last decades, full elucidation of the specific roles of the target biological mechanisms involved in COPD muscle dysfunction is still required. Such an achievement will be crucial to adequately tackle with this relevant clinical problem of COPD patients in the near-future.
Collapse
Affiliation(s)
- Joaquim Gea
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Sergi Pascual
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Carme Casadevall
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Mauricio Orozco-Levi
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Esther Barreiro
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Lopez-Campos JL, Jara-Palomares L, Muñoz X, Bustamante V, Barreiro E. Lights and shadows of non-invasive mechanical ventilation for chronic obstructive pulmonary disease (COPD) exacerbations. Ann Thorac Med 2015; 10:87-93. [PMID: 25829958 PMCID: PMC4375747 DOI: 10.4103/1817-1737.151440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/30/2014] [Indexed: 01/01/2023] Open
Abstract
Despite the overwhelming evidence justifying the use of non-invasive ventilation (NIV) for providing ventilatory support in chronic obstructive pulmonary disease (COPD) exacerbations, recent studies demonstrated that its application in real-life settings remains suboptimal. European clinical audits have shown that 1) NIV is not invariably available, 2) its availability depends on countries and hospital sizes, and 3) numerous centers declare their inability to provide NIV to all of the eligible patients presenting throughout the year. Even with an established indication, the use of NIV in acute respiratory failure due to COPD exacerbations faces important challenges. First, the location and personnel using NIV should be carefully selected. Second, the use of NIV is not straightforward despite the availability of technologically advanced ventilators. Third, NIV therapy of critically ill patients requires a thorough knowledge of both respiratory physiology and existing ventilatory devices. Accordingly, an optimal team-training experience, the careful selection of patients, and special attention to the selection of devices are critical for optimizing NIV outcomes. Additionally, when applied, NIV should be closely monitored, and endotracheal intubation should be promptly available in the case of failure. Another topic that merits careful consideration is the use of NIV in the elderly. This patient population is particularly fragile, with several physiological and social characteristics requiring specific attention in relation to NIV. Several other novel indications should also be critically examined, including the use of NIV during fiberoptic bronchoscopy or transesophageal echocardiography, as well as in interventional cardiology and pulmonology. The present narrative review aims to provide updated information on the use of NIV in acute settings to improve the clinical outcomes of patients hospitalized for COPD exacerbations.
Collapse
Affiliation(s)
- Jose Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla ; Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Jara-Palomares
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla
| | - Xavier Muñoz
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain ; Department of Medicine, Pulmonology Service, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Bustamante
- Departamento de Medicina, Servicio de Neumología, Hospital Universitario Basurto, Osakidetza, EHU-University of the Basque Country, Biscay, Spain
| | - Esther Barreiro
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain ; Department of Pulmonology, Muscle Research and Respiratory System Unit Institut Hospital del Mar d'Investigacions Médiques Hospital del Mar, Barcelona, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
|