1
|
Espinosa Maldonado AA, Dolovich AT, Johnston JD, McWalter EJ. Design, Evaluation, and Implementation of a Novel Magnetic Resonance Imaging-Compatible Physiologic Loading Simulator for Ex-Vivo Joints. J Biomech Eng 2025; 147:011008. [PMID: 39436779 DOI: 10.1115/1.4066957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Quantitative magnetic resonance imaging (qMRI), in combination with mechanical testing, offers potential to investigate how loading (e.g., from daily physical exercise) is related to joint and tissue function. However, current testing devices compatible with magnetic resonance imaging (MRI) are often limited to uniaxial compression, often applying low loads, or loading individual tissues (instead of multiple), while more complex simulators do not facilitate MRI. Hence, in this work, we designed, built and tested (N = 1) an MRI-compatible multi-axial load-control system, which enables scanning cadaveric joints (healthy or pathologic) loaded to physiologically relevant levels. Testing involved estimating and validating physiologic loading conditions before implementing them experimentally on cadaver knees to simulate and image gait loading (stance and swing). The resulting design consisted of a portable loading device featuring pneumatic actuators to reach a combined loading scenario, including axial compression (≤2.5 kN), shear (≤1 kN), bending (≤30 N·m) and muscle tension. Initial laboratory testing was carried out; specifically, the device was instrumented with force and pressure sensors to evaluate loading and contact response repeatability in one cadaver knee specimen. This loading system was able to simulate healthy or pathologic gait with reasonable repeatability (e.g., 1.23-2.91% coefficient of variation for axial compression), comparable to current state-of-the-art simulators, leading to generally consistent contact responses. Contact measurements demonstrated a tibiofemoral to patellofemoral load transfer with knee flexion and large contact pressures concentrated over small sites between the femoral cartilage and menisci, agreeing with experimental studies and numerical simulations in the literature.
Collapse
Affiliation(s)
- Alvaro A Espinosa Maldonado
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Allan T Dolovich
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - James D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Emily J McWalter
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
2
|
Yang Y, Wang Y, Zheng N, Cheng R, Zou D, Zhao J, Tsai TY. Development and Validation of a Novel In Vitro Joint Testing System for Reproduction of In Vivo Dynamic Muscle Force. Bioengineering (Basel) 2023; 10:1006. [PMID: 37760108 PMCID: PMC10525521 DOI: 10.3390/bioengineering10091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
In vitro biomechanical experiments utilizing cadaveric specimens are one of the most effective methods for rehearsing surgical procedures, testing implants, and guiding postoperative rehabilitation. Applying dynamic physiological muscle force to the specimens is a challenge to reconstructing the environment of bionic mechanics in vivo, which is often ignored in the in vitro experiment. The current work aims to establish a hardware platform and numerical computation methods to reproduce dynamic muscle forces that can be applied to mechanical testing on in vitro specimens. Dynamic muscle loading is simulated through numerical computation, and the inputs of the platform will be derived. Then, the accuracy and robustness of the platform will be evaluated through actual muscle loading tests in vitro. The tests were run on three muscles (gastrocnemius lateralis, the rectus femoris, and the semitendinosus) around the knee joint and the results showed that the platform can accurately reproduce the magnitude of muscle strength (errors range from -6.2% to 1.81%) and changing pattern (goodness-of-fit range coefficient ranges from 0.00 to 0.06) of target muscle forces. The robustness of the platform is mainly manifested in that the platform can still accurately reproduce muscle force after changing the hardware combination. Additionally, the standard deviation of repeated test results is very small (standard ranges of hardware combination 1: 0.34 N~2.79 N vs. hardware combination 2: 0.68 N~2.93 N). Thus, the platform can stably and accurately reproduce muscle forces in vitro, and it has great potential to be applied in the future musculoskeletal loading system.
Collapse
Affiliation(s)
- Yangyang Yang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200230, China; (Y.Y.); (Y.W.); (N.Z.); (R.C.); (D.Z.)
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Engineering Research Center for Digital Medicine, Ministry of Education, Shanghai 200230, China
| | - Yufan Wang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200230, China; (Y.Y.); (Y.W.); (N.Z.); (R.C.); (D.Z.)
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Engineering Research Center for Digital Medicine, Ministry of Education, Shanghai 200230, China
| | - Nan Zheng
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200230, China; (Y.Y.); (Y.W.); (N.Z.); (R.C.); (D.Z.)
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Engineering Research Center for Digital Medicine, Ministry of Education, Shanghai 200230, China
| | - Rongshan Cheng
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200230, China; (Y.Y.); (Y.W.); (N.Z.); (R.C.); (D.Z.)
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Engineering Research Center for Digital Medicine, Ministry of Education, Shanghai 200230, China
| | - Diyang Zou
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200230, China; (Y.Y.); (Y.W.); (N.Z.); (R.C.); (D.Z.)
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Engineering Research Center for Digital Medicine, Ministry of Education, Shanghai 200230, China
| | - Jie Zhao
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200230, China; (Y.Y.); (Y.W.); (N.Z.); (R.C.); (D.Z.)
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Engineering Research Center for Digital Medicine, Ministry of Education, Shanghai 200230, China
- Shanghai Key Laboratory of Orthopaedic Implants & Clinical Translation R&D Center of 3D Printing Technology, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tsung-Yuan Tsai
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200230, China; (Y.Y.); (Y.W.); (N.Z.); (R.C.); (D.Z.)
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Engineering Research Center for Digital Medicine, Ministry of Education, Shanghai 200230, China
- Shanghai Key Laboratory of Orthopaedic Implants & Clinical Translation R&D Center of 3D Printing Technology, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
3
|
Hewison C, Kolaczek S, Caterine S, Berardelli R, Beveridge T, Lording T, Akindolire J, Herman B, Hurtig M, Gordon K, Getgood A. Peripheral fixation of meniscal allograft does not reduce coronal extrusion under physiological load. Knee Surg Sports Traumatol Arthrosc 2019; 27:1924-1930. [PMID: 30478470 DOI: 10.1007/s00167-018-5305-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 11/15/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Meniscal graft extrusion is a concern following meniscal allograft transplantation (MAT). MAT surgical techniques continue to evolve in an effort to reduce extrusion; however, improvements remain difficult to measure in vivo. A novel MRI-compatible in vitro loading device capable of applying physiologically relevant loads has been developed, allowing for the measurement of extrusion under a variety of controllable conditions. The objective of this study was to compare maximal medial MAT extrusion (1) with and (2) without an additional peripheral third point of fixation on the tibial plateau. METHODS Twelve human cadaveric knees underwent medial MAT, utilizing soft tissue anterior and posterior root fixation via transosseous suture, with a third transosseous suture tied over a button providing peripheral fixation on the tibial plateau. The joint was positioned at 5 degrees of flexion and loaded to 1 × body weight (647.7 ± 159.0 N) during MR image acquisition, with and without peripheral fixation. The joint was then positioned at 30 degrees of flexion and the process was repeated. Maximal coronal extrusion was measured. RESULTS An increase in maximal coronal meniscal extrusion was noted between the unloaded and loaded states. At 30 degrees of flexion, with the addition of a peripheral fixation point, a statistically significant difference in absolute extrusion (p = 0.02) and relative percent extrusion (p = 0.04) between the unloaded and loaded state was found. The addition of a peripheral fixation suture resulted in an overall mean percent difference of - 2.49% (SD 14.1; 95% CI - 11.95, 6.97; n.s.) in extrusion at 5 degrees of flexion and a mean percent difference of - 0.95% (SD 7.3; 95% CI - 5.62, 3.71; n.s.) in extrusion at 30 degrees of flexion. These differences were not statistically significant. CONCLUSION These results suggest that the addition of a peripheral anchor in medial MAT does not reduce the amount of maximal coronal extrusion and, therefore, may not confer any clinical benefit. Surgical techniques utilized to reduce MAT extrusion need further investigation to understand if the added technical difficulty and potential expense is warranted.
Collapse
Affiliation(s)
| | | | | | - Rebecca Berardelli
- Fowler Kennedy Sport Medicine Clinic, Western University, London, Canada
| | | | - Tim Lording
- Melbourne Orthopaedic Group, Melbourne, Australia
| | - Jason Akindolire
- Fowler Kennedy Sport Medicine Clinic, Western University, London, Canada
| | - Ben Herman
- Fowler Kennedy Sport Medicine Clinic, Western University, London, Canada
| | - Mark Hurtig
- Ontario Veterinary College, University of Guelph, Guelph, Canada
| | | | - Alan Getgood
- Fowler Kennedy Sport Medicine Clinic, Western University, London, Canada.
| |
Collapse
|
4
|
Kolaczek S, Hewison C, Caterine S, Berardelli R, Beveridge T, Herman B, Hurtig M, Gordon K, Getgood A. 3D strain in native medial meniscus is comparable to medial meniscus allograft transplant. Knee Surg Sports Traumatol Arthrosc 2019; 27:349-353. [PMID: 30043117 DOI: 10.1007/s00167-018-5075-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Injury or degeneration of the meniscus has been associated with the development of osteoarthritis of the knee joint. Meniscal allograft transplant (MAT) has been shown to reduce pain and restore function in patients who remain symptomatic following meniscectomy. The purpose of this study is to evaluate and compare the three-dimensional (3D) strain in native medial menisci compared to allograft-transplanted medial menisci in both the loaded and unloaded states. METHODS Ten human cadaveric knees underwent medial MAT, utilizing soft-tissue anterior and posterior root fixation via transosseous sutures tied over an anterolateral proximal tibial cortical bone bridge. The joint was imaged first in the non-loaded state, then was positioned at 5° of flexion and loaded to 1× body weight (650 ± 160 N) during MR image acquisition. Anatomical landmarks were chosen from each image to create a tibial coordinate system, which were then input into a custom-written program (Matlab R2014a) to calculate the 3D strain from the unloaded and loaded marker positions. Six independent strains were obtained: three principal strains and three shearing strains. RESULTS No statistically significant difference was found between the middle and posterior strains in the native knee compared to the meniscus allograft. This would suggest that soft-tissue fixation of meniscal allografts results in similar time zero principal and shear strains in comparison to the native meniscus. CONCLUSION These results suggest that time zero MAT performs in a similar manner to the native meniscus. Optimizing MAT strain behavior may lead to potential improvements in its chondroprotective effect.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben Herman
- Fowler Kennedy Sport Medicine Clinic, Western University, London, UK
| | - Mark Hurtig
- Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Karen Gordon
- School of Engineering, University of Guelph, Guelph, Canada
| | - Alan Getgood
- Fowler Kennedy Sport Medicine Clinic, Western University, London, UK.
| |
Collapse
|