1
|
Xie Q, Jiang X, Huang X. Distraction osteogenesis application in bone defect caused by osteomyelitis following mandibular fracture surgery: a case report and literature review. BMC Musculoskelet Disord 2024; 25:813. [PMID: 39407162 PMCID: PMC11475752 DOI: 10.1186/s12891-024-07922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Osteomyelitis secondary to mandibular fracture surgery is rare and complete surgical debridement of necrotic infected tissues is an optimal treatment for it. Subsequent reconstruction is required for bone defect caused by operation. Autogenous, allograft and synthetic bone graft substitutes have become widespread in bone defect treatment. Distraction osteogenesis (DO) was also applied in bone defect reconstruction, even it wasn't conventional therapy in jaw. CASE PRESENTATION Here we report a case of a 40-year-old aged man who presented with chronic swelling and pain on the right mandibular masseteric region after mandibular angle and Le Fort II fracture surgery. In six weeks after surgery, CBCT images showed that the fracture ends hadn't heal and the fracture gap had widened significantly. The clinical diagnosis of the patient was right mandibular angle osteomyelitis. After controlling the symptoms of pain and infection with local rinses and systemic antibiotic therapy, the patient underwent segmental resection of the infected bone and DO reconstruction for bone defect simultaneously. Encouragingly, well bone healing and normal occlusion restoration was observed finally. CONCLUSIONS DO could be a valuable alternative therapy to bone grafts for bone defect, even in the case of infection.
Collapse
Affiliation(s)
- Qingtiao Xie
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College&Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, China
| | - Xianfang Jiang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College&Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, China
| | - Xuanping Huang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College&Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Fu F, Li M, Yang S, Du G, Xu Y, Jiang J, Jia L, Zhang K, Li P. The effects of SDF-1 combined application with VEGF on femoral distraction osteogenesis in rats. Open Life Sci 2024; 19:20220851. [PMID: 38645752 PMCID: PMC11032098 DOI: 10.1515/biol-2022-0851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/03/2024] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
Bone regeneration and mineralization can be achieved by means of distraction osteogenesis (DO). In the present study, we investigated the effect of stromal cell-derived factor 1 (SDF-1) and vascular endothelial growth factor (VEGF) on the new bone formation during DO in rats. Forty-eight Sprague-Dawley rats were randomized into four groups of 12 rats each. We established the left femoral DO model in rats and performed a mid-femoral osteotomy, which was fixed with an external fixator. DO was performed at 0.25 mm/12 h after an incubation period of 5 days. Distraction was continued for 10 days, resulting in a total of 5 mm of lengthening. After distraction, the solution was locally injected into the osteotomy site, once a day 1 ml for 1 week. One group received the solvent alone and served as the control, and the other three groups were treated with SDF-1, VEGF, and SDF-1with VEGF in an aqueous. Sequential X-ray radiographs were taken two weekly. The regeneration was monitored with the use of micro-CT analysis, mechanical testing, and histology. Radiographs showed accelerated regenerate ossification in the SDF-1, VEGF, and SDF-1 with the VEGF group, with a larger amount of new bone compared with the control group, especially SDF-1 with the VEGF group. Micro-CT analysis and biomechanical tests showed Continuous injection of the SDF-1, VEGF, and SDF-1 with VEGF during the consolidation period significantly increased bone mineral density bone volume, mechanical maximum loading, and bone mineralization of the regenerate. Similarly, the expression of osteogenic-specific genes, as determined by real-time polymerase chain reaction , was significantly higher in SDF-1 with the VEGF group than in the other groups. Histological examination revealed more new trabeculae in the distraction gap and more mature bone tissue for the SDF-1 with the VEGF group. SDF-1 and VEGF promote bone regeneration and mineralization during DO, and there is a synergistic effect between the SDF-1 and VEGF. It is possible to provide a new and feasible method to shorten the period of treatment of DO.
Collapse
Affiliation(s)
- Fangang Fu
- Department of Orthopaedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Mengqi Li
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Shuye Yang
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Gangqiang Du
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Yingjiang Xu
- Binzhou Medical University Hospital, Binzhou, China
| | - Jianhao Jiang
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Long Jia
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Kai Zhang
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| | - Peng Li
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, 256603China
| |
Collapse
|
3
|
Yu SH, Saleh MHA, Wang HL. Simultaneous or staged lateral ridge augmentation: A clinical guideline on the decision-making process. Periodontol 2000 2023; 93:107-128. [PMID: 37529966 DOI: 10.1111/prd.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
Lateral ridge augmentation is a standard surgical procedure that can be performed prior to (staged) or simultaneously with implant placement. The decision between a simultaneous or staged approach involves considering multiple variables. This paper proposed a decision-making process that serves as a guideline for choosing the best treatment choice based on the available evidence and the author's clinical experience.
Collapse
Affiliation(s)
- Shan-Huey Yu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Private Practice, Vienna, Virginia, USA
| | - Muhammad H A Saleh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Rando RG, Buchaim DV, Cola PC, Buchaim RL. Effects of Photobiomodulation Using Low-Level Laser Therapy on Alveolar Bone Repair. PHOTONICS 2023; 10:734. [DOI: 10.3390/photonics10070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Alveolar bone repair is a complex and extremely important process, so that functions such as the mastication, occlusion and osseointegration of implants can be properly reestablished. Therefore, in order to optimize this process, many procedures have been used, such as grafting with biomaterials and the application of platelet-rich fibrin (PRF). Another method that has been studied is the use of photobiomodulation (PBM) with the use of low-level laser therapy (LLLT), which, through the absorption of photons by the tissue, triggers photochemical mechanisms in the cells so that they start to act in the search for homeostasis of the affected region. Therefore, the objective of this review was to analyze the use of LLLT as a possible auxiliary tool in the alveolar bone repair process. A search was carried out in scientific databases (PubMed/MEDLINE, Web of Science, Scopus and Cochrane) regarding the following descriptors: “low-level laser therapy AND alveolar bone repair” and “photobiomodulation AND alveolar bone repair”. Eighteen studies were selected for detailed analysis, after excluding duplicates and articles that did not meet predetermined inclusion or non-inclusion criteria. According to the studies, it has been seen that LLLT promotes the acceleration of alveolar repair due to the stimulation of ATP production, activation of transcription and growth factors, attenuation of the inflammatory process and induction of angiogenesis. These factors depend on the laser application protocol, and the Gallium Aluminum Arsenide—GaAlAs laser, with a wavelength of 830 nm, was the most used and, when applications of different energy densities were compared, the highest dosages showed themselves to be more efficient. Thus, it was possible to conclude that PBM with LLLT has beneficial effects on the alveolar bone repair process due to its ability to reduce pain, the inflammatory process, induce vascular sprouting and, consequently, accelerate the formation of a new bone matrix, favoring the maintenance or increase in height and/or thickness of the alveolar bone ridge.
Collapse
Affiliation(s)
- Renata Gonçalves Rando
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| | - Paula Cristina Cola
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Speech Therapy Department, São Paulo State University (UNESP), Marilia 17525-900, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
5
|
Helaehil JV, Helaehil LV, Alves LF, Huang B, Santamaria-Jr M, Bartolo P, Caetano GF. Electrical Stimulation Therapy and HA/TCP Composite Scaffolds Modulate the Wnt Pathways in Bone Regeneration of Critical-Sized Defects. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010075. [PMID: 36671647 PMCID: PMC9854456 DOI: 10.3390/bioengineering10010075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Critical bone defects are the most difficult challenges in the area of tissue repair. Polycaprolactone (PCL) scaffolds, associated with hydroxyapatite (HA) and tricalcium phosphate (TCP), are reported to have an enhanced bioactivity. Moreover, the use of electrical stimulation (ES) has overcome the lack of bioelectricity at the bone defect site and compensated the endogenous electrical signals. Such treatments could modulate cells and tissue signaling pathways. However, there is no study investigating the effects of ES and bioceramic composite scaffolds on bone tissue formation, particularly in the view of cell signaling pathway. This study aims to investigate the application of HA/TCP composite scaffolds and ES and their effects on the Wingless-related integration site (Wnt) pathway in critical bone repair. Critical bone defects (25 mm2) were performed in rats, which were divided into four groups: PCL, PCL + ES, HA/TCP and HA/TCP + ES. The scaffolds were grafted at the defect site and applied with the ES application twice a week using 10 µA of current for 5 min. Bone samples were collected for histomorphometry, immunohistochemistry and molecular analysis. At the Wnt canonical pathway, HA/TCP and HA/TCP + ES groups showed higher Wnt1 and β-catenin gene expression levels, especially HA/TCP. Moreover, HA/TCP + ES presented higher Runx2, Osterix and Bmp-2 levels. At the Wnt non-canonical pathway, HA/TCP group showed higher voltage-gated calcium channel (Vgcc), calmodulin-dependent protein kinase II, and Wnt5a genes expression, while HA/TCP + ES presented higher protein expression of VGCC and calmodulin (CaM) at the same period. The decrease in sclerostin and osteopontin genes expressions and the lower bone sialoprotein II in the HA/TCP + ES group may be related to the early bone remodeling. This study shows that the use of ES modulated the Wnt pathways and accelerated the osteogenesis with improved tissue maturation.
Collapse
Affiliation(s)
- Júlia Venturini Helaehil
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Luiza Venturini Helaehil
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Laryssa Fernanda Alves
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Boyang Huang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Milton Santamaria-Jr
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
- Graduate Program of Orthodontics, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
| | - Paulo Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence: (P.B.); (G.F.C.)
| | - Guilherme Ferreira Caetano
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
- Graduate Program of Orthodontics, University Center of Hermínio Ometto Foundation, FHO, Araras 13607-339, Brazil
- Division of Dermatology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo 05508-060, Brazil
- Correspondence: (P.B.); (G.F.C.)
| |
Collapse
|
6
|
Hatefi S, Alizargar J, Yihun Y, Etemadi Sh M, Hsieh NC, Abou-El-Hossein K. Hybrid Distractor for Continuous Mandibular Distraction Osteogenesis. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120732. [PMID: 36550938 PMCID: PMC9774957 DOI: 10.3390/bioengineering9120732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Distraction osteogenesis (DO) is a reconstruction method for repairing bone deficiencies in the oral and maxillofacial area. Manual DO techniques have shown the functionality of the DO method for bone tissue reconstruction. The DO method can improve treatment conditions, as well as the quality of the reconstructed bone, compared with conventional techniques. Recently, continuous DO devices have been proposed to enable an automatic DO process while using a continuous force for moving the bone segment (BS). Animal studies and clinical trials have shown the successful application of continuous distractors in terms of improving DO factors, including rate and rhythm. The continuous DO technique can shorten the treatment time and enhance the quality of the regenerated tissue. However, the developed continuous distractors are yet to be used in human applications. In this study, by combining motor-driven and hydraulic techniques, a hybrid distractor is proposed. The hybrid distractor is capable of generating a continuous distraction force while controlling the position of the BS in a linear vector, with a high positioning accuracy. Results of modelling and experimental study revealed that the proposed hybrid distractor met all required factors for enabling a continuous DO procedure in humans. The proposed distractor is capable of eliminating the drawbacks of exiting techniques in terms of generating and transferring a controlled distraction force to the BS. The wireless control, as well as the small size of the device, makes this device a suitable solution for use in the reconstruction of bone defects in the maxillofacial area in humans.
Collapse
Affiliation(s)
- Shahrokh Hatefi
- Ultra-High Precision Manufacturing Laboratory, Department of Mechatronics Engineering, Faculty of Engineering, The Built Environment and Technology, Nelson Mandela University, Port Elizabeth 6000, South Africa
- Correspondence: (S.H.); (J.A.)
| | - Javad Alizargar
- Research Center for Healthcare Industry Innovation, National Taipei University of Nursing and Health Sciences, Taipei City 112, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei City 112, Taiwan
- Correspondence: (S.H.); (J.A.)
| | - Yimesker Yihun
- Robotics and Control Laboratory, Mechanical Engineering Department, Wichita State University, Wichita, KS 67260, USA
| | - Milad Etemadi Sh
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Nan-Chen Hsieh
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei City 112, Taiwan
| | - Khaled Abou-El-Hossein
- Ultra-High Precision Manufacturing Laboratory, Department of Mechatronics Engineering, Faculty of Engineering, The Built Environment and Technology, Nelson Mandela University, Port Elizabeth 6000, South Africa
| |
Collapse
|
7
|
Hatefi S, Etemadi Sh M, Alizargar J, Behdadipour V, Abou-El-Hossein K. Two-Axis Continuous Distractor for Mandibular Reconstruction. Bioengineering (Basel) 2022; 9:bioengineering9080371. [PMID: 36004896 PMCID: PMC9405178 DOI: 10.3390/bioengineering9080371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
The application of Distraction Osteogenesis (DO) techniques in the reconstruction of skeletal deficiencies is a relatively new topic in the fields of oral and maxillofacial surgeries. In many reconstruction applications, using DO is the preferred technique, as opposed to conventional reconstruction techniques, as there are more advantages and fewer side effects when it is used. The first generation of DO devices is made up of manual distractors that can apply an intermittent distraction force to the bone segment during the distraction process. Manual DO techniques have shown the functionality of the DO technique. Further research has recently been performed on the development of automatic devices for generating a controlled continuous force. However, the existing automatic techniques have limitations, and are yet to be used in reconstruction applications in humans. There is still a gap between the developed techniques and an ideal distractor to be used in mandibular reconstruction surgeries. In this research, a two-axis continuous distractor is proposed for use in mandibular reconstruction applications. The proposed distractor can generate two continuous distraction forces that can be applied to two independent distraction vectors. The proposed device can perform the standard distraction process using the predetermined distraction factors. The control system has a high positioning accuracy and resolution in controlling the position of the intra-oral end effectors while applying two continuous forces for moving the bone segment. The proposed two-axis continuous distractor meets the current requirements, and can be used as an ideal continuous DO device for different mandibular reconstruction applications.
Collapse
Affiliation(s)
- Shahrokh Hatefi
- Ultra-High Precision Manufacturing Laboratory, Department of Mechatronics Engineering, Faculty of Engineering, the Built Environment and Technology, Nelson Mandela University, Port Elizabeth 6000, South Africa
- Correspondence: (S.H.); (J.A.)
| | - Milad Etemadi Sh
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Javad Alizargar
- Research Center for Healthcare Industry Innovation, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Correspondence: (S.H.); (J.A.)
| | - Venous Behdadipour
- College of Agricultural Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Khaled Abou-El-Hossein
- Ultra-High Precision Manufacturing Laboratory, Department of Mechatronics Engineering, Faculty of Engineering, the Built Environment and Technology, Nelson Mandela University, Port Elizabeth 6000, South Africa
| |
Collapse
|
8
|
Hatefi S, Smith F, Abou-El-Hossein K. Automatic continuous distraction osteogenesis device for hand reconstruction applications. Med Eng Phys 2022; 101:103770. [DOI: 10.1016/j.medengphy.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/02/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
|
9
|
Bioengineered Living Bone Grafts-A Concise Review on Bioreactors and Production Techniques In Vitro. Int J Mol Sci 2022; 23:ijms23031765. [PMID: 35163687 PMCID: PMC8836415 DOI: 10.3390/ijms23031765] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
It has been observed that bone fractures carry a risk of high mortality and morbidity. The deployment of a proper bone healing method is essential to achieve the desired success. Over the years, bone tissue engineering (BTE) has appeared to be a very promising approach aimed at restoring bone defects. The main role of the BTE is to apply new, efficient, and functional bone regeneration therapy via a combination of bone scaffolds with cells and/or healing promotive factors (e.g., growth factors and bioactive agents). The modern approach involves also the production of living bone grafts in vitro by long-term culture of cell-seeded biomaterials, often with the use of bioreactors. This review presents the most recent findings concerning biomaterials, cells, and techniques used for the production of living bone grafts under in vitro conditions. Particular attention has been given to features of known bioreactor systems currently used in BTE: perfusion bioreactors, rotating bioreactors, and spinner flask bioreactors. Although bioreactor systems are still characterized by some limitations, they are excellent platforms to form bioengineered living bone grafts in vitro for bone fracture regeneration. Moreover, the review article also describes the types of biomaterials and sources of cells that can be used in BTE as well as the role of three-dimensional bioprinting and pulsed electromagnetic fields in both bone healing and BTE.
Collapse
|