1
|
Tanprasert S, Kampeewichean C, Shiratori S, Piemjaiswang R, Chalermsinsuwan B. Non-spherical drug particle deposition in human airway using computational fluid dynamics and discrete element method. Int J Pharm 2023; 639:122979. [PMID: 37100258 DOI: 10.1016/j.ijpharm.2023.122979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Currently, the air pollution and the respiratory disease problems that affect human health are increasing rapidly. Hence, there is attention for trend prediction of the located deposition of inhaled particles. In this study, Weibel's based human airway model (G0-G5) was employed. The computational fluid dynamics and discrete element method (CFD-DEM) simulation was successfully validated by comparison to the previous research studies. The CFD-DEM achieves a better balance between numerical accuracy and computational requirement when comparing with the other methods. Then, the model was used to analyze the non-spherical drug transport with different drug particle sizes, shapes, density, and concentrations. The results found that all the studied factors affected the drug deposition and particle out-mass percentage except the drug concentration. The drug deposition was increased with the increasing of particle size and particle density due to the influence of particle inertia. The Tomahawk-shaped drug deposited easier than the cylindrical drug shape because of the different drag behavior. For the effect of airway geometries, G0 was the maximum deposited zone and G3 was the minimum deposited zone. The boundary layer was found around bifurcation due to the shear force at the wall. Finally, the knowledge can give an essential recommendation for curing patients with pharmaceutical aerosol. The design suggestion of a proper drug delivery device can be summarized.
Collapse
Affiliation(s)
- Sorathan Tanprasert
- Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Chanida Kampeewichean
- Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Shuichi Shiratori
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ratchanon Piemjaiswang
- Environmental Research Institute, Chulalongkorn University, Institute Building 2, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Benjapon Chalermsinsuwan
- Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand; Advanced Computational Fluid Dynamics Research Unit, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Ma Z, Kourmatzis A, Milton-McGurk L, Chan HK, Farina D, Cheng S. Simulating the effect of individual upper airway anatomical features on drug deposition. Int J Pharm 2022; 628:122219. [PMID: 36179925 DOI: 10.1016/j.ijpharm.2022.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022]
Abstract
This study aims to systematically isolate different anatomical features of the human pharynx with the goal to investigate their independent influence on airflow dynamics and particle deposition characteristics in a geometrically realistic human airway. Specifically, the effects of the uvula, epiglottis and soft palate on drug particle deposition are studied systematically, by carefully removing each of these anatomical features from reconstructed models based on MRI data and comparing them to a benchmark realistic airway model. Computational Fluid Dynamics using established turbulence models is employed to simulate the transport of mono-dispersed particles (3 µm) in the airway at two flow-rates. The simulations suggest three findings: 1) widening the space between the oral cavity and oropharynx and where the soft palate is situated leads to the most dramatic reduction in drug deposition in the upper airway; 2) exclusion of the uvula and epiglottis: a) affects flow dynamics in the airway; b) alters regional deposition behaviour; c) does not significantly affect the total number of particles deposited in the pharynx; and 3) the space adjacent to the soft palate is a key determinant for aerosol deposition in the extrathoracic region and is related to mechanisms of flow acceleration, diversion and recirculation.
Collapse
Affiliation(s)
- Zhaoqi Ma
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006
| | - Liam Milton-McGurk
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006
| | - Hak-Kim Chan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006
| | - Dino Farina
- Proveris Scientific Corporation, Hudson, Massachusetts, United States
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109.
| |
Collapse
|