1
|
Pu W, Xie X. Letter to the editor. Med Eng Phys 2024; 132:104231. [PMID: 39428131 DOI: 10.1016/j.medengphy.2024.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 10/22/2024]
Affiliation(s)
- WenJun Pu
- Department of Information Engineering, School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China
| | - XinZhou Xie
- Department of Information Engineering, School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
2
|
Pu W, Chen Y, Zhao S, Yu T, Lin H, Gao H, Xie S, Zhang X, Zhang B, Li C, Lian K, Xie X. Computing pulsatile blood flow of coronary artery under incomplete boundary conditions. Med Eng Phys 2024; 130:104193. [PMID: 39160034 DOI: 10.1016/j.medengphy.2024.104193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Accurate measurement of pulsatile blood flow in the coronary arteries enables coronary wave intensity analysis, which can serve as an indicator for assessing coronary artery physiology and myocardial viability. Computational fluid dynamics (CFD) methods integrating coronary angiography images and fractional flow reserve (FFR) offer a novel approach for computing mean coronary blood flow. However, previous methods neglect the inertial effect of blood flow, which may have great impact on pulsatile blood flow calculation. To improve the accuracy of pulsatile blood flow calculation, a novel CFD based method considering the inertia term is proposed. METHODS A flow resistance model based on Pressure-Flow vs.Time curves is proposed to model the resistance of the epicardial artery. The parameters of the flow resistance model can be fitted from the simulated pulsating flow rates and pressure drops of a specific mode. Then, pulsating blood flow can be calculated by combining the incomplete pressure boundary conditions under pulsating conditions which are easily obtained in clinic. Through simulation experiments, the effectiveness of the proposed method is validated in idealized and reconstructed 3D model of coronary artery. The impacts of key parameters for generating the simulated pulsating flow rates and pressure drops on the accuracy of pulsatile blood flow calculation are also investigated. RESULTS For the idealized model, the previously proposed Pressure-Flow model has a significant leading effect on the computed blood flow waveform in the moderate model, and this leading effect disappears with the increase of the degree of stenosis. The improved model proposed in this paper has no leading effect, the root mean square error (RMSE) of the proposed model is low (the left coronary mode:≤0.0160, the right coronary mode:≤0.0065) for all simulated models, and the RMSE decreases with an increase of stenosis. The RMSE is consistently small (≤0.0217) as the key parameters of the proposed method vary in a large range. It is verified in the reconstructed model that the proposed model significantly reduces the RMSE of patients with moderate stenosis (the Pressure-Flow model:≤0.0683, the Pressure-Flow vs.Time model:≤0.0297), and the obtained blood flow waveform has a higher coincidence with the simulated reference waveform. CONCLUSIONS This paper confirms that ignoring the effect of inertia term can significantly affect the accuracy of calculating pulsatile blood flow in moderate stenosis lesions, and the new method proposed in this paper can significantly improves the accuracy of calculating pulsatile blood flow in moderate stenosis lesions. The proposed method provides a convenient clinical method for obtaining pressure-synchronized blood flow, which is expected to facilitate the application of waveform analysis in the diagnosis of coronary artery disease.
Collapse
Affiliation(s)
- WenJun Pu
- Department of Information Engineering, School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yan Chen
- Department of Cardiology, No. 971 Hospital of the PLA Navy, Qingdao, Shandong, China
| | - Shuai Zhao
- Department of Cardiology, Air Force Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Tiantong Yu
- Department of Cardiology, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi, China
| | - Heqiang Lin
- Department of Information Engineering, School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Haokao Gao
- Department of Cardiology, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi, China
| | - Songyun Xie
- Department of Information Engineering, School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xi Zhang
- Department of Cardiology, Xijing Hospital, Changle West Road, Xi'an, Shaanxi, China
| | - Bohui Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xixian New District, Xi'an, Shaanxi, China
| | - Chengxiang Li
- Department of Cardiology, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi, China.
| | - Xinzhou Xie
- Department of Information Engineering, School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Taylor DJ, Saxton H, Halliday I, Newman T, Feher J, Gosling R, Narracott AJ, van Kemenade D, Van't Veer M, Tonino PAL, Rochette M, Hose DR, Gunn JP, Morris PD. Evaluation of models of sequestration flow in coronary arteries-Physiology versus anatomy? Comput Biol Med 2024; 173:108299. [PMID: 38537564 DOI: 10.1016/j.compbiomed.2024.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Myocardial ischaemia results from insufficient coronary blood flow. Computed virtual fractional flow reserve (vFFR) allows quantification of proportional flow loss without the need for invasive pressure-wire testing. In the current study, we describe a novel, conductivity model of side branch flow, referred to as 'leak'. This leak model is a function of taper and local pressure, the latter of which may change radically when focal disease is present. This builds upon previous techniques, which either ignore side branch flow, or rely purely on anatomical factors. This study aimed to describe a new, conductivity model of side branch flow and compare this with established anatomical models. METHODS AND RESULTS The novel technique was used to quantify vFFR, distal absolute flow (Qd) and microvascular resistance (CMVR) in 325 idealised 1D models of coronary arteries, modelled from invasive clinical data. Outputs were compared to an established anatomical model of flow. The conductivity model correlated and agreed with the reference model for vFFR (r = 0.895, p < 0.0001; +0.02, 95% CI 0.00 to + 0.22), Qd (r = 0.959, p < 0.0001; -5.2 mL/min, 95% CI -52.2 to +13.0) and CMVR (r = 0.624, p < 0.0001; +50 Woods Units, 95% CI -325 to +2549). CONCLUSION Agreement between the two techniques was closest for vFFR, with greater proportional differences seen for Qd and CMVR. The conductivity function assumes vessel taper was optimised for the healthy state and that CMVR was not affected by local disease. The latter may be addressed with further refinement of the technique or inferred from complementary image data. The conductivity technique may represent a refinement of current techniques for modelling coronary side-branch flow. Further work is needed to validate the technique against invasive clinical data.
Collapse
Affiliation(s)
- Daniel J Taylor
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom.
| | - Harry Saxton
- Materials & Engineering Research Institute, Sheffield Hallam University, Sheffield, United Kingdom
| | - Ian Halliday
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Tom Newman
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | | | - Rebecca Gosling
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J Narracott
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Denise van Kemenade
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Marcel Van't Veer
- Department of Cardiology, Catharina Hospital, Eindhoven, Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Pim A L Tonino
- Department of Cardiology, Catharina Hospital, Eindhoven, Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - D Rodney Hose
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Julian P Gunn
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Paul D Morris
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom; Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|