1
|
Jafari R, Kandpal A, Verma R, Aggarwal V, Gupta RK, Singh A. Automatic pipeline for segmentation of LV myocardium on quantitative MR T1 maps using deep learning model and computation of radial T1 and ECV values. NMR IN BIOMEDICINE 2024; 37:e5230. [PMID: 39097976 DOI: 10.1002/nbm.5230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Native T1 mapping is a non-invasive technique used for early detection of diffused myocardial abnormalities, and it provides baseline tissue characterization. Post-contrast T1 mapping enhances tissue differentiation, enables extracellular volume (ECV) calculation, and improves myocardial viability assessment. Accurate and precise segmenting of the left ventricular (LV) myocardium on T1 maps is crucial for assessing myocardial tissue characteristics and diagnosing cardiovascular diseases (CVD). This study presents a deep learning (DL)-based pipeline for automatically segmenting LV myocardium on T1 maps and automatic computation of radial T1 and ECV values. The study employs a multicentric dataset consisting of retrospective multiparametric MRI data of 332 subjects to develop and assess the performance of the proposed method. The study compared DL architectures U-Net and Deep Res U-Net for LV myocardium segmentation, which achieved a dice similarity coefficient of 0.84 ± 0.43 and 0.85 ± 0.03, respectively. The dice similarity coefficients computed for radial sub-segmentation of the LV myocardium on basal, mid-cavity, and apical slices were 0.77 ± 0.21, 0.81 ± 0.17, and 0.61 ± 0.14, respectively. The t-test performed between ground truth vs. predicted values of native T1, post-contrast T1, and ECV showed no statistically significant difference (p > 0.05) for any of the radial sub-segments. The proposed DL method leverages the use of quantitative T1 maps for automatic LV myocardium segmentation and accurately computing radial T1 and ECV values, highlighting its potential for assisting radiologists in objective cardiac assessment and, hence, in CVD diagnostics.
Collapse
Affiliation(s)
- Raufiya Jafari
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Ankit Kandpal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Radhakrishan Verma
- Department of Radiology, Fortis Memorial Research Institute, Gurugram, India
| | - Vinayak Aggarwal
- Department of Cardiology, Fortis Memorial Research Institute, Gurugram, India
| | - Rakesh Kumar Gupta
- Department of Radiology, Fortis Memorial Research Institute, Gurugram, India
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, AIIMS, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
2
|
Tayebi Arasteh S, Romanowicz J, Pace DF, Golland P, Powell AJ, Maier AK, Truhn D, Brosch T, Weese J, Lotfinia M, van der Geest RJ, Moghari MH. Automated segmentation of 3D cine cardiovascular magnetic resonance imaging. Front Cardiovasc Med 2023; 10:1167500. [PMID: 37904806 PMCID: PMC10613522 DOI: 10.3389/fcvm.2023.1167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
Introduction As the life expectancy of children with congenital heart disease (CHD) is rapidly increasing and the adult population with CHD is growing, there is an unmet need to improve clinical workflow and efficiency of analysis. Cardiovascular magnetic resonance (CMR) is a noninvasive imaging modality for monitoring patients with CHD. CMR exam is based on multiple breath-hold 2-dimensional (2D) cine acquisitions that should be precisely prescribed and is expert and institution dependent. Moreover, 2D cine images have relatively thick slices, which does not allow for isotropic delineation of ventricular structures. Thus, development of an isotropic 3D cine acquisition and automatic segmentation method is worthwhile to make CMR workflow straightforward and efficient, as the present work aims to establish. Methods Ninety-nine patients with many types of CHD were imaged using a non-angulated 3D cine CMR sequence covering the whole-heart and great vessels. Automatic supervised and semi-supervised deep-learning-based methods were developed for whole-heart segmentation of 3D cine images to separately delineate the cardiac structures, including both atria, both ventricles, aorta, pulmonary arteries, and superior and inferior vena cavae. The segmentation results derived from the two methods were compared with the manual segmentation in terms of Dice score, a degree of overlap agreement, and atrial and ventricular volume measurements. Results The semi-supervised method resulted in a better overlap agreement with the manual segmentation than the supervised method for all 8 structures (Dice score 83.23 ± 16.76% vs. 77.98 ± 19.64%; P-value ≤0.001). The mean difference error in atrial and ventricular volumetric measurements between manual segmentation and semi-supervised method was lower (bias ≤ 5.2 ml) than the supervised method (bias ≤ 10.1 ml). Discussion The proposed semi-supervised method is capable of cardiac segmentation and chamber volume quantification in a CHD population with wide anatomical variability. It accurately delineates the heart chambers and great vessels and can be used to accurately calculate ventricular and atrial volumes throughout the cardiac cycle. Such a segmentation method can reduce inter- and intra- observer variability and make CMR exams more standardized and efficient.
Collapse
Affiliation(s)
- Soroosh Tayebi Arasteh
- Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jennifer Romanowicz
- Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Department of Cardiology, Children’s Hospital Colorado, and School of Medicine, University of Colorado, Aurora, CO, United States
| | - Danielle F. Pace
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Polina Golland
- Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andrew J. Powell
- Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Andreas K. Maier
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Brosch
- Philips Research Laboratories, Hamburg, Germany
| | | | - Mahshad Lotfinia
- Institute of Heat and Mass Transfer, RWTH Aachen University, Aachen, Germany
| | | | - Mehdi H. Moghari
- Department of Radiology, Children’s Hospital Colorado, and School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
3
|
Ribeiro MAO, Nunes FLS. Left ventricle segmentation combining deep learning and deformable models with anatomical constraints. J Biomed Inform 2023; 142:104366. [PMID: 37086958 DOI: 10.1016/j.jbi.2023.104366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Segmentation of the left ventricle is a key approach in Cardiac Magnetic Resonance Imaging for calculating biomarkers in diagnosis. Since there is substantial effort required from the expert, many automatic segmentation methods have been proposed, in which deep learning networks have obtained remarkable performance. However, one of the main limitations of these approaches is the production of segmentations that contain anatomical errors. To avoid this limitation, we propose a new fully-automatic left ventricle segmentation method combining deep learning and deformable models. We propose a new level set energy formulation that includes exam-specific information estimated from the deep learning segmentation and shape constraints. The method is part of a pipeline containing pre-processing steps and a failure correction post-processing step. Experiments were conducted with the Sunnybrook and ACDC public datasets, and a private dataset. Results suggest that the method is competitive, that it can produce anatomically consistent segmentations, has good generalization ability, and is often able to estimate biomarkers close to the expert.
Collapse
Affiliation(s)
- Matheus A O Ribeiro
- University of São Paulo, Rua Arlindo Bettio, 1000, Vila Guaraciaba, São Paulo, 01000-000, São Paulo, Brazil.
| | - Fátima L S Nunes
- University of São Paulo, Rua Arlindo Bettio, 1000, Vila Guaraciaba, São Paulo, 01000-000, São Paulo, Brazil.
| |
Collapse
|
4
|
An Automatic Random Walker Algorithm for Segmentation of Ground Glass Opacity Pulmonary Nodules. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6727957. [PMID: 36212245 PMCID: PMC9537033 DOI: 10.1155/2022/6727957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/02/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Automatic and accurate segmentation of ground glass opacity (GGO) nodules still remains challenging due to inhomogeneous interiors, irregular shapes, and blurred boundaries from different patients. Despite successful applications in the image processing domains, the random walk has some limitations for segmentation of GGO pulmonary nodules. In this paper, an improved random walker method is proposed for the segmentation of GGO nodules. To calculate a new affinity matrix, intensity, spatial, and texture features are incorporated. It strengthens discriminative power between two adjacent nodes on the graph. To address the problem of robustness in seed acquisition, the geodesic distance is introduced and a novel local search strategy is presented to automatically acquire reliable seeds. For segmentation, a label constraint term is introduced to the energy function of original random walker, which alleviates the accumulation of errors caused by the initial seeds acquisition. Massive experiments conducted on Lung Images Dataset Consortium (LIDC) demonstrate that the proposed method achieves visually satisfactory results without user interactions. Both qualitative and quantitative evaluations also demonstrate that the proposed method obtains better performance compared with conventional random walker method and state-of-the-art segmentation methods in terms of the overlap score and F-measure.
Collapse
|
5
|
Guo Y, Bi L, Zhu Z, Feng DD, Zhang R, Wang Q, Kim J. Automatic left ventricular cavity segmentation via deep spatial sequential network in 4D computed tomography. Comput Med Imaging Graph 2021; 91:101952. [PMID: 34144318 DOI: 10.1016/j.compmedimag.2021.101952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/26/2022]
Abstract
Automated segmentation of left ventricular cavity (LVC) in temporal cardiac image sequences (consisting of multiple time-points) is a fundamental requirement for quantitative analysis of cardiac structural and functional changes. Deep learning methods for segmentation are the state-of-the-art in performance; however, these methods are generally formulated to work on a single time-point, and thus disregard the complementary information available from the temporal image sequences that can aid in segmentation accuracy and consistency across the time-points. In particular, single time-point segmentation methods perform poorly in segmenting the end-systole (ES) phase image in the cardiac sequence, where the left ventricle deforms to the smallest irregular shape, and the boundary between the blood chamber and the myocardium becomes inconspicuous and ambiguous. To overcome these limitations in automatically segmenting temporal LVCs, we present a spatial sequential network (SS-Net) to learn the deformation and motion characteristics of the LVCs in an unsupervised manner; these characteristics are then integrated with sequential context information derived from bi-directional learning (BL) where both chronological and reverse-chronological directions of the image sequence are used. Our experimental results on a cardiac computed tomography (CT) dataset demonstrate that our spatial-sequential network with bi-directional learning (SS-BL-Net) outperforms existing methods for spatiotemporal LVC segmentation.
Collapse
Affiliation(s)
- Yuyu Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Computer Science, University of Sydney, NSW 2006, Australia
| | - Lei Bi
- School of Computer Science, University of Sydney, NSW 2006, Australia
| | - Zhengbin Zhu
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - David Dagan Feng
- School of Computer Science, University of Sydney, NSW 2006, Australia
| | - Ruiyan Zhang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jinman Kim
- School of Computer Science, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Shi X, Li C. Convexity preserving level set for left ventricle segmentation. Magn Reson Imaging 2021; 78:109-118. [PMID: 33592247 DOI: 10.1016/j.mri.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Abstract
In clinical applications of cardiac left ventricle (LV) segmentation, the segmented LV is desired to include the cavity, trabeculae, and papillary muscles, which form a convex shape. However, the intensities of trabeculae and papillary muscles are similar to myocardium. Consequently, segmentation algorithms may easily misclassify trabeculae and papillary muscles as myocardium. In this paper, we propose a level set method with a convexity preserving mechanism to ensure the convexity of the segmented LV. In the proposed level set method, the curvature of the level set contours is used to control their convexity, such that the level set contour is finally deformed as a convex shape. The experimental results and the comparison with other level set methods show the advantage of our method in terms of segmentation accuracy. Compared with the state-of-the-art methods using deep-learning, our method is able to achieve comparable segmentation accuracy without the need for training, while the deep-learning based method requires a large set of training data and high-quality manual segmentation. Therefore, our method can be conveniently used in situation where training data and their manual segmentation are not available.
Collapse
Affiliation(s)
- Xue Shi
- University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunming Li
- University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
7
|
Dynamically constructed network with error correction for accurate ventricle volume estimation. Med Image Anal 2020; 64:101723. [DOI: 10.1016/j.media.2020.101723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 11/20/2022]
|
8
|
Li X, Li B, Liu F, Yin H, Zhou F. Segmentation of Pulmonary Nodules Using a GMM Fuzzy C-Means Algorithm. IEEE ACCESS 2020; 8:37541-37556. [DOI: 10.1109/access.2020.2968936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
9
|
Luo G, Dong S, Wang W, Wang K, Cao S, Tam C, Zhang H, Howey J, Ohorodnyk P, Li S. Commensal correlation network between segmentation and direct area estimation for bi-ventricle quantification. Med Image Anal 2020; 59:101591. [DOI: 10.1016/j.media.2019.101591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/25/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
|
10
|
Petersen SE, Abdulkareem M, Leiner T. Artificial Intelligence Will Transform Cardiac Imaging-Opportunities and Challenges. Front Cardiovasc Med 2019; 6:133. [PMID: 31552275 PMCID: PMC6746883 DOI: 10.3389/fcvm.2019.00133] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/27/2019] [Indexed: 01/31/2023] Open
Abstract
Artificial intelligence (AI) using machine learning techniques will change healthcare as we know it. While healthcare AI applications are currently trailing behind popular AI applications, such as personalized web-based advertising, the pace of research and deployment is picking up and about to become disruptive. Overcoming challenges such as patient and public support, transparency over the legal basis for healthcare data use, privacy preservation, technical challenges related to accessing large-scale data from healthcare systems not designed for Big Data analysis, and deployment of AI in routine clinical practice will be crucial. Cardiac imaging and imaging of other body parts is likely to be at the frontier for the development of applications as pattern recognition and machine learning are a significant strength of AI with practical links to image processing. Many opportunities in cardiac imaging exist where AI will impact patients, medical staff, hospitals, commissioners and thus, the entire healthcare system. This perspective article will outline our vision for AI in cardiac imaging with examples of potential applications, challenges and some lessons learnt in recent years.
Collapse
Affiliation(s)
- Steffen E Petersen
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Musa Abdulkareem
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Tim Leiner
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
11
|
Liao F, Chen X, Hu X, Song S. Estimation of the Volume of the Left Ventricle From MRI Images Using Deep Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:495-504. [PMID: 29990055 DOI: 10.1109/tcyb.2017.2778799] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Segmenting human left ventricle (LV) in magnetic resonance imaging images and calculating its volume are important for diagnosing cardiac diseases. The latter task became the topic of the Second Annual Data Science Bowl organized by Kaggle. The dataset consisted of a large number of cases with only systole and diastole volume labels. We designed a system based on neural networks to solve this problem. It began with a detector to detect the regions of interest (ROI) containing LV chambers. Then a deep neural network named hypercolumns fully convolutional network was used to segment LV in ROI. The 2-D segmentation results were integrated across different images to estimate the volume. With ground-truth volume labels, this model was trained end-to-end. To improve the result, an additional dataset with only segmentation labels was used. The model was trained alternately on these two tasks. We also proposed a variance estimation method for the final prediction. Our algorithm ranked the fourth on the test set in this competition.
Collapse
|
12
|
voxel-GAN: Adversarial Framework for Learning Imbalanced Brain Tumor Segmentation. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES 2019. [DOI: 10.1007/978-3-030-11726-9_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Kamranian Z, Naghsh Nilchi AR, Monadjemi A, Navab N. Iterative algorithm for interactive co-segmentation using semantic information propagation. APPL INTELL 2018. [DOI: 10.1007/s10489-018-1221-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Liu J, Zhuang X, Xie H, Zhang S, Gu L. Myocardium segmentation from DE MRI with guided random walks and sparse shape representation. Int J Comput Assist Radiol Surg 2018; 13:1579-1590. [PMID: 29982903 DOI: 10.1007/s11548-018-1817-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE For patients with myocardial infarction (MI), delayed enhancement (DE) cardiovascular magnetic resonance imaging (MRI) is a sensitive and well-validated technique for the detection and visualization of MI. The myocardium viability assessment with DE MRI is important in diagnosis and treatment management, where myocardium segmentation is a prerequisite. However, few academic works have focused on automated myocardium segmentation from DE images. In this study, we aim to develop an automatic myocardium segmentation algorithm that targets DE images. METHODS We propose a segmentation framework based on both prior shape knowledge and image intensity. Instead of the strong request of the pre-segmentation of cine MRI in the same session, we use the sparse representation method to model the myocardium shape. Data from the Cardiac MR Left Ventricle Segmentation Challenge (2009) are used to build the shape template repository. The method of guided random walks is used to integrate the shape model and intensity information. An iterative approach is used to gradually improve the results. RESULTS The proposed method was tested on the DE MRI data from 30 MI patients. The proposed method achieved Dice similarity coefficients (DSC) of 74.60 ± 7.79% with 201 shape templates and 73.56 ± 6.32% with 56 shape templates, which were close to the inter-observer difference (73.94 ± 5.12%). To test the generalization of the proposed method to routine clinical images, the DE images of 10 successive new patients were collected, which were unseen during the method development and parameter tuning, and a DSC of 76.02 ± 7.43% was achieved. CONCLUSION The authors propose a novel approach for the segmentation of myocardium from DE MRI by using the sparse representation-based shape model and guided random walks. The sparse representation method effectively models the prior shape with a small number of shape templates, and the proposed method has the potential to achieve clinically relevant results.
Collapse
Affiliation(s)
- Jie Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiahai Zhuang
- School of Data Science, Fundan University, Shanghai, 200433, China.
| | - Hongzhi Xie
- Department of Cardiothoracic Surgery, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Shuyang Zhang
- Department of Cardiothoracic Surgery, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Lixu Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Oksuz I, Mukhopadhyay A, Dharmakumar R, Tsaftaris SA. Unsupervised Myocardial Segmentation for Cardiac BOLD. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2228-2238. [PMID: 28708550 PMCID: PMC5726889 DOI: 10.1109/tmi.2017.2726112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A fully automated 2-D+time myocardial segmentation framework is proposed for cardiac magnetic resonance (CMR) blood-oxygen-level-dependent (BOLD) data sets. Ischemia detection with CINE BOLD CMR relies on spatio-temporal patterns in myocardial intensity, but these patterns also trouble supervised segmentation methods, the de facto standard for myocardial segmentation in cine MRI. Segmentation errors severely undermine the accurate extraction of these patterns. In this paper, we build a joint motion and appearance method that relies on dictionary learning to find a suitable subspace. Our method is based on variational pre-processing and spatial regularization using Markov random fields, to further improve performance. The superiority of the proposed segmentation technique is demonstrated on a data set containing cardiac phase-resolved BOLD MR and standard CINE MR image sequences acquired in baseline and ischemic condition across ten canine subjects. Our unsupervised approach outperforms even supervised state-of-the-art segmentation techniques by at least 10% when using Dice to measure accuracy on BOLD data and performs at par for standard CINE MR. Furthermore, a novel segmental analysis method attuned for BOLD time series is utilized to demonstrate the effectiveness of the proposed method in preserving key BOLD patterns.
Collapse
Affiliation(s)
- Ilkay Oksuz
- IMT School for Advanced Studies Lucca, Italy () and also with Diagnostic Radiology Department of Yale University, CT, USA
| | - Anirban Mukhopadhyay
- Interactive Graphics Systems Group, Technische Universitat Darmstadt, Darmstadt, Germany, ()
| | - Rohan Dharmakumar
- Cedars-Sinai Medical Center and University of California Los Angeles, CA, USA ()
| | - Sotirios A. Tsaftaris
- Institute for Digital Communications, School of Engineering, University of Edinburgh, West Mains Rd, Edinburgh EH9 3FB, UK. ()
| |
Collapse
|
16
|
A 3D Hermite-based multiscale local active contour method with elliptical shape constraints for segmentation of cardiac MR and CT volumes. Med Biol Eng Comput 2017; 56:833-851. [PMID: 29058109 DOI: 10.1007/s11517-017-1732-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.
Collapse
|
17
|
Albà X, Lekadir K, Pereañez M, Medrano-Gracia P, Young AA, Frangi AF. Automatic initialization and quality control of large-scale cardiac MRI segmentations. Med Image Anal 2017; 43:129-141. [PMID: 29073531 DOI: 10.1016/j.media.2017.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/29/2017] [Accepted: 10/04/2017] [Indexed: 01/09/2023]
Abstract
Continuous advances in imaging technologies enable ever more comprehensive phenotyping of human anatomy and physiology. Concomitant reduction of imaging costs has resulted in widespread use of imaging in large clinical trials and population imaging studies. Magnetic Resonance Imaging (MRI), in particular, offers one-stop-shop multidimensional biomarkers of cardiovascular physiology and pathology. A wide range of analysis methods offer sophisticated cardiac image assessment and quantification for clinical and research studies. However, most methods have only been evaluated on relatively small databases often not accessible for open and fair benchmarking. Consequently, published performance indices are not directly comparable across studies and their translation and scalability to large clinical trials or population imaging cohorts is uncertain. Most existing techniques still rely on considerable manual intervention for the initialization and quality control of the segmentation process, becoming prohibitive when dealing with thousands of images. The contributions of this paper are three-fold. First, we propose a fully automatic method for initializing cardiac MRI segmentation, by using image features and random forests regression to predict an initial position of the heart and key anatomical landmarks in an MRI volume. In processing a full imaging database, the technique predicts the optimal corrective displacements and positions in relation to the initial rough intersections of the long and short axis images. Second, we introduce for the first time a quality control measure capable of identifying incorrect cardiac segmentations with no visual assessment. The method uses statistical, pattern and fractal descriptors in a random forest classifier to detect failures to be corrected or removed from subsequent statistical analysis. Finally, we validate these new techniques within a full pipeline for cardiac segmentation applicable to large-scale cardiac MRI databases. The results obtained based on over 1200 cases from the Cardiac Atlas Project show the promise of fully automatic initialization and quality control for population studies.
Collapse
Affiliation(s)
- Xènia Albà
- Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Universitat Pompeu Fabra, Barcelona, Spain.
| | - Karim Lekadir
- Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Universitat Pompeu Fabra, Barcelona, Spain
| | - Marco Pereañez
- Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Electronic and Electrical Engineering Department, University of Sheffield, Sheffield, UK
| | - Pau Medrano-Gracia
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, NZ
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, NZ
| | - Alejandro F Frangi
- Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Electronic and Electrical Engineering Department, University of Sheffield, Sheffield, UK
| |
Collapse
|
18
|
Luo G, Dong S, Wang K, Zuo W, Cao S, Zhang H. Multi-Views Fusion CNN for Left Ventricular Volumes Estimation on Cardiac MR Images. IEEE Trans Biomed Eng 2017; 65:1924-1934. [PMID: 29035205 DOI: 10.1109/tbme.2017.2762762] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Left ventricular (LV) volume estimation is a critical procedure for cardiac disease diagnosis. The objective of this paper is to address a direct LV volume prediction task. METHODS In this paper, we propose a direct volume prediction method based on the end-to-end deep convolutional neural networks. We study the end-to-end LV volume prediction method in items of the data preprocessing, network structure, and multiview fusion strategy. The main contributions of this paper are the following aspects. First, we propose a new data preprocessing method on cardiac magnetic resonance (CMR). Second, we propose a new network structure for end-to-end LV volume estimation. Third, we explore the representational capacity of different slices and propose a fusion strategy to improve the prediction accuracy. RESULTS The evaluation results show that the proposed method outperforms other state-of-the-art LV volume estimation methods on the open accessible benchmark datasets. The clinical indexes derived from the predicted volumes agree well with the ground truth ( ${\rm{EDV:R}}^{{\rm 2}}={\text{0.974}}$, ${\rm{RMSE\,}}= {\text{9.6}}{\rm{\,ml}}$; ${\rm{ESV:R}}^{{\rm 2}}={\text{0.976}}$, ${\rm{RMSE}}= {\text{7.1}}\,{\text{ml}}$; ${\rm{EF:R}}^{{\rm 2}} ={\text{0.828}}$, ${\rm{RMSE}}= {\text{4.71}}\% $). CONCLUSION Experimental results prove that the proposed method may be useful for the LV volume prediction task. SIGNIFICANCE The proposed method not only has application potential for cardiac diseases screening for large-scale CMR data, but also can be extended to other medical image research fields.
Collapse
|
19
|
Abstract
Partial differential equation-based (PDE-based) methods are extensively used in image segmentation, especially in contour models. Difficulties associated with the boundaries, namely troubles with developing initialization, inadequate convergence to boundary concavities, and difficulties connected to saddle points and stationary points of active contours make the contour models suffer from a feeble performance of referring to complex geometries. The present paper is designed to take advantage of mean value theorem rather than minimizing energy function for contours. It is efficiently capable of resolving above-mentioned problems by applying this theorem to the edge map gradient vectors, which is calculated from the image. Since the contour is computed in a straightforward manner from an edge map instead of force balance equation, it varies from other contour-based image segmentation methods. To illustrate the ability of the proposed model in complex geometries and ruptures, several experiments were also provided to validate the model. The experiments' results demonstrated that the proposed method, which is called mean value guided contour (MVGC), is capable of repositioning contours into boundary concavities and has suitable forcefulness in complex geometries.
Collapse
Affiliation(s)
- Ali A Kiaei
- Department of computer engineering, Bu-Ali Sina University, Hamedan, Iran.
| | - Hassan Khotanlou
- Department of computer engineering, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
20
|
Cai K, Yang R, Chen H, Li L, Zhou J, Ou S, Liu F. A framework combining window width-level adjustment and Gaussian filter-based multi-resolution for automatic whole heart segmentation. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.03.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Qian X, Lin Y, Zhao Y, Wang J, Liu J, Zhuang X. Segmentation of myocardium from cardiac MR images using a novel dynamic programming based segmentation method. Med Phys 2016; 42:1424-35. [PMID: 25735296 DOI: 10.1118/1.4907993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Myocardium segmentation in cardiac magnetic resonance (MR) images plays a vital role in clinical diagnosis of the cardiovascular diseases. Because of the low contrast and large variation in intensity and shapes, myocardium segmentation has been a challenging task. A dynamic programming (DP) based segmentation method, incorporating the likelihood and shape information of the myocardium, is developed for segmenting myocardium in cardiac MR images. METHODS The endocardium, i.e., the left ventricle blood cavity, is segmented for initialization, and then the optimal epicardium contour is determined using the polar-transformed image and DP scheme. In the DP segmentation scheme, three techniques are proposed to improve the segmentation performance: (1) the likelihood image of the myocardium is constructed to define the external cost in the DP, thus the cost function incorporates prior probability estimation; (2) the adaptive search range is introduced to determine the polar-transformed image, thereby excluding irrelevant tissues; (3) the connectivity constrained DP algorithm is developed to obtain an optimal closed contour. Four metrics, including the Dice metric (Dice), root mean squared error (RMSE), reliability, and correlation coefficient, are used to assess the segmentation accuracy. The authors evaluated the performance of the proposed method on a private dataset and the MICCAI 2009 challenge dataset. The authors also explored the effects of the three new techniques of the DP scheme in the proposed method. RESULTS For the qualitative evaluation, the segmentation results of the proposed method were clinically acceptable. For the quantitative evaluation, the mean (Dice) for the endocardium and epicardium was 0.892 and 0.927, respectively; the mean RMSE was 2.30 mm for the endocardium and 2.39 mm for the epicardium. In addition, the three new techniques in the proposed DP scheme, i.e., the likelihood image of the myocardium, the adaptive search range, and the connectivity constrained DP algorithm, improved the segmentation performance for the epicardium with 0.029, 0.047, and 0.007 in terms of the Dice and 0.98, 1.31, and 0.21 mm in terms of the RMSE, respectively. CONCLUSIONS The three techniques (the likelihood image of the myocardium, the adaptive search range, and the connectivity constrained DP algorithm) can improve the segmentation ability of the DP method, and the proposed method with these techniques has the ability to achieve the acceptable segmentation result of the myocardium in cardiac MR images. Therefore, the proposed method would be useful in clinical diagnosis of the cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaohua Qian
- SJTUCU International Cooperative Research Center, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China and Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yuan Lin
- Division of Research and Innovations, Carestream Health, Inc., Rochester, New York 14615
| | - Yue Zhao
- College of Electronic Science and Engineering, Jilin University, 2699 Qianjing Street, Changchun, Jilin 130012, China
| | - Jing Wang
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Jing Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiahai Zhuang
- SJTUCU International Cooperative Research Center, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Feng C, Zhang S, Zhao D, Li C. Simultaneous extraction of endocardial and epicardial contours of the left ventricle by distance regularized level sets. Med Phys 2016; 43:2741-2755. [DOI: 10.1118/1.4947126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Peng P, Lekadir K, Gooya A, Shao L, Petersen SE, Frangi AF. A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. MAGMA (NEW YORK, N.Y.) 2016; 29:155-95. [PMID: 26811173 PMCID: PMC4830888 DOI: 10.1007/s10334-015-0521-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/01/2015] [Accepted: 12/17/2015] [Indexed: 01/19/2023]
Abstract
Cardiovascular magnetic resonance (CMR) has become a key imaging modality in clinical cardiology practice due to its unique capabilities for non-invasive imaging of the cardiac chambers and great vessels. A wide range of CMR sequences have been developed to assess various aspects of cardiac structure and function, and significant advances have also been made in terms of imaging quality and acquisition times. A lot of research has been dedicated to the development of global and regional quantitative CMR indices that help the distinction between health and pathology. The goal of this review paper is to discuss the structural and functional CMR indices that have been proposed thus far for clinical assessment of the cardiac chambers. We include indices definitions, the requirements for the calculations, exemplar applications in cardiovascular diseases, and the corresponding normal ranges. Furthermore, we review the most recent state-of-the art techniques for the automatic segmentation of the cardiac boundaries, which are necessary for the calculation of the CMR indices. Finally, we provide a detailed discussion of the existing literature and of the future challenges that need to be addressed to enable a more robust and comprehensive assessment of the cardiac chambers in clinical practice.
Collapse
Affiliation(s)
- Peng Peng
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, S1 3JD, UK
| | | | - Ali Gooya
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, S1 3JD, UK
| | - Ling Shao
- Department of Computer Science and Digital Technologies, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Steffen E Petersen
- Centre Lead for Advanced Cardiovascular Imaging, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Alejandro F Frangi
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
24
|
Random walks with shape prior for cochlea segmentation in ex vivo μCT. Int J Comput Assist Radiol Surg 2016; 11:1647-59. [PMID: 26995601 DOI: 10.1007/s11548-016-1365-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Cochlear implantation is a safe and effective surgical procedure to restore hearing in deaf patients. However, the level of restoration achieved may vary due to differences in anatomy, implant type and surgical access. In order to reduce the variability of the surgical outcomes, we previously proposed the use of a high-resolution model built from [Formula: see text] images and then adapted to patient-specific clinical CT scans. As the accuracy of the model is dependent on the precision of the original segmentation, it is extremely important to have accurate [Formula: see text] segmentation algorithms. METHODS We propose a new framework for cochlea segmentation in ex vivo [Formula: see text] images using random walks where a distance-based shape prior is combined with a region term estimated by a Gaussian mixture model. The prior is also weighted by a confidence map to adjust its influence according to the strength of the image contour. Random walks is performed iteratively, and the prior mask is aligned in every iteration. RESULTS We tested the proposed approach in ten [Formula: see text] data sets and compared it with other random walks-based segmentation techniques such as guided random walks (Eslami et al. in Med Image Anal 17(2):236-253, 2013) and constrained random walks (Li et al. in Advances in image and video technology. Springer, Berlin, pp 215-226, 2012). Our approach demonstrated higher accuracy results due to the probability density model constituted by the region term and shape prior information weighed by a confidence map. CONCLUSION The weighted combination of the distance-based shape prior with a region term into random walks provides accurate segmentations of the cochlea. The experiments suggest that the proposed approach is robust for cochlea segmentation.
Collapse
|
25
|
Albà X, Pereañez M, Hoogendoorn C, Swift AJ, Wild JM, Frangi AF, Lekadir K. An Algorithm for the Segmentation of Highly Abnormal Hearts Using a Generic Statistical Shape Model. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:845-859. [PMID: 26552082 DOI: 10.1109/tmi.2015.2497906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Statistical shape models (SSMs) have been widely employed in cardiac image segmentation. However, in conditions that induce severe shape abnormality and remodeling, such as in the case of pulmonary hypertension (PH) or hypertrophic cardiomyopathy (HCM), a single SSM is rarely capable of capturing the anatomical variability in the extremes of the distribution. This work presents a new algorithm for the segmentation of severely abnormal hearts. The algorithm is highly flexible, as it does not require a priori knowledge of the involved pathology or any specific parameter tuning to be applied to the cardiac image under analysis. The fundamental idea is to approximate the gross effect of the abnormality with a virtual remodeling transformation between the patient-specific geometry and the average shape of the reference model (e.g., average normal morphology). To define this mapping, a set of landmark points are automatically identified during boundary point search, by estimating the reliability of the candidate points. With the obtained transformation, the feature points extracted from the patient image volume are then projected onto the space of the reference SSM, where the model is used to effectively constrain and guide the segmentation process. The extracted shape in the reference space is finally propagated back to the original image of the abnormal heart to obtain the final segmentation. Detailed validation with patients diagnosed with PH and HCM shows the robustness and flexibility of the technique for the segmentation of highly abnormal hearts of different pathologies.
Collapse
|
26
|
Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal 2016; 30:108-119. [PMID: 26917105 DOI: 10.1016/j.media.2016.01.005] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/03/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) datasets is an essential step for calculation of clinical indices such as ventricular volume and ejection fraction. In this work, we employ deep learning algorithms combined with deformable models to develop and evaluate a fully automatic LV segmentation tool from short-axis cardiac MRI datasets. The method employs deep learning algorithms to learn the segmentation task from the ground true data. Convolutional networks are employed to automatically detect the LV chamber in MRI dataset. Stacked autoencoders are used to infer the LV shape. The inferred shape is incorporated into deformable models to improve the accuracy and robustness of the segmentation. We validated our method using 45 cardiac MR datasets from the MICCAI 2009 LV segmentation challenge and showed that it outperforms the state-of-the art methods. Excellent agreement with the ground truth was achieved. Validation metrics, percentage of good contours, Dice metric, average perpendicular distance and conformity, were computed as 96.69%, 0.94, 1.81 mm and 0.86, versus those of 79.2-95.62%, 0.87-0.9, 1.76-2.97 mm and 0.67-0.78, obtained by other methods, respectively.
Collapse
Affiliation(s)
- M R Avendi
- Center for Pervasive Communications and Computing, University of California, Irvine, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, USA.
| | - Arash Kheradvar
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, USA.
| | - Hamid Jafarkhani
- Center for Pervasive Communications and Computing, University of California, Irvine, USA.
| |
Collapse
|
27
|
Principles and methods for automatic and semi-automatic tissue segmentation in MRI data. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:95-110. [DOI: 10.1007/s10334-015-0520-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/26/2022]
|
28
|
|
29
|
Mi H, Petitjean C, Vera P, Ruan S. Joint tumor growth prediction and tumor segmentation on therapeutic follow-up PET images. Med Image Anal 2015; 23:84-91. [PMID: 25988489 DOI: 10.1016/j.media.2015.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/26/2015] [Accepted: 04/24/2015] [Indexed: 11/30/2022]
Abstract
Tumor response to treatment varies among patients. Patient-specific prediction of tumor evolution based on medical images during the treatment can help to build and adapt patient's treatment planning in a non-invasive way. Personalized tumor growth modeling allows patient-specific prediction by estimating model parameters based on individual's images. The model parameters are often estimated by optimizing a cost function constructed based on the tumor delineations. In this paper, we propose a joint framework for tumor growth prediction and tumor segmentation in the context of patient's therapeutic follow ups. Throughout the treatment, a series of sequential positron emission tomography (PET) images are acquired for tumor response monitoring. We propose to take into account the predicted information, which is used in combination with the random walks (RW) algorithm, to develop an automatic tumor segmentation method on PET images. Moreover, we propose an iterative scheme of RW, making the segmentation more performant. Furthermore, the obtained segmentation is applied to the process of model parameter estimation so as to get the model based prediction of tumor evolution. We evaluate our methods on 7 lung tumor patients, totaling 29 PET exams, under radiotherapy by comparing the obtained tumor prediction and tumor segmentation with manual tumor delineation by expert. Our system produces promising results when compared to the state-of-the-art methods.
Collapse
Affiliation(s)
- Hongmei Mi
- QuantIF - LITIS (EA4108 - FR CNRS 3638), University of Rouen, Rouen 76000, France.
| | - Caroline Petitjean
- QuantIF - LITIS (EA4108 - FR CNRS 3638), University of Rouen, Rouen 76000, France
| | - Pierre Vera
- QuantIF - LITIS (EA4108 - FR CNRS 3638), University of Rouen, Rouen 76000, France; Centre Henri-Becquerel, Rouen 76038, France
| | - Su Ruan
- QuantIF - LITIS (EA4108 - FR CNRS 3638), University of Rouen, Rouen 76000, France
| |
Collapse
|
30
|
Abstract
High-level noise and low contrast characteristics in medical images continue to present major bottlenecks in their segmentation despite increased imaging modalities. This paper presents a semi-automatic algorithm that utilizes the noise for enhancing the contrast of low contrast input magnetic resonance images followed by a new graph cut method to reconstruct the surface of left ventricle. The main contribution in this work is a new formulation for preventing the conventional cellular automata method to leak into surrounding regions of similar intensity. Instead of segmenting each slice of a subject sequence individually, we empirically select a few slices, segment them, and reconstruct the left ventricular surface. During the course of surface reconstruction, we use level sets to segment the rest of the slices automatically. We have throughly evaluated the method on both York and MICCAI Grand Challenge workshop databases. The average Dice coefficient (in %) is found to be 92.4 ± 1.3 (value indicates the mean and standard deviation) whereas false positive ratio, false negative ratio, and specificity are found to be 0.019, 7.62 × 10-3, and 0.75, respectively. Average Hausdorff distance between segmented contour and ground truth is determined to be 2.94 mm. The encouraging quantitative and qualitative results reflect the potential of the proposed method.
Collapse
|
31
|
Dakua SP, Abinahed J, Al-Ansari A. Semiautomated hybrid algorithm for estimation of three-dimensional liver surface in CT using dynamic cellular automata and level-sets. J Med Imaging (Bellingham) 2015; 2:024006. [PMID: 26158101 PMCID: PMC4478775 DOI: 10.1117/1.jmi.2.2.024006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/22/2015] [Indexed: 11/14/2022] Open
Abstract
Liver segmentation continues to remain a major challenge, largely due to its intense complexity with surrounding anatomical structures (stomach, kidney, and heart), high noise level and lack of contrast in pathological computed tomography (CT) data. We present an approach to reconstructing the liver surface in low contrast CT. The main contributions are: (1) a stochastic resonance-based methodology in discrete cosine transform domain is developed to enhance the contrast of pathological liver images, (2) a new formulation is proposed to prevent the object boundary, resulting from the cellular automata method, from leaking into the surrounding areas of similar intensity, and (3) a level-set method is suggested to generate intermediate segmentation contours from two segmented slices distantly located in a subject sequence. We have tested the algorithm on real datasets obtained from two sources, Hamad General Hospital and medical image computing and computer-assisted interventions grand challenge workshop. Various parameters in the algorithm, such as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], play imperative roles, thus their values are precisely selected. Both qualitative and quantitative evaluation performed on liver data show promising segmentation accuracy when compared with ground truth data reflecting the potential of the proposed method.
Collapse
Affiliation(s)
- Sarada Prasad Dakua
- Qatar Science & Technology Park, Qatar Robotic Surgery Centre, Al Gharrafa Street, Al Rayyan, Education City, PO Box 210000, Doha, Qatar
| | - Julien Abinahed
- Qatar Science & Technology Park, Qatar Robotic Surgery Centre, Al Gharrafa Street, Al Rayyan, Education City, PO Box 210000, Doha, Qatar
| | - Abdulla Al-Ansari
- Hamad General Hospital, Department of Urology, Hamad Medical City, PO Box 3050, Doha, Qatar
| |
Collapse
|
32
|
Wang L, Pei M, Codella NCF, Kochar M, Weinsaft JW, Li J, Prince MR, Wang Y. Left ventricle: fully automated segmentation based on spatiotemporal continuity and myocardium information in cine cardiac magnetic resonance imaging (LV-FAST). BIOMED RESEARCH INTERNATIONAL 2015; 2015:367583. [PMID: 25738153 PMCID: PMC4337041 DOI: 10.1155/2015/367583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/04/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
Abstract
CMR quantification of LV chamber volumes typically and manually defines the basal-most LV, which adds processing time and user-dependence. This study developed an LV segmentation method that is fully automated based on the spatiotemporal continuity of the LV (LV-FAST). An iteratively decreasing threshold region growing approach was used first from the midventricle to the apex, until the LV area and shape discontinued, and then from midventricle to the base, until less than 50% of the myocardium circumference was observable. Region growth was constrained by LV spatiotemporal continuity to improve robustness of apical and basal segmentations. The LV-FAST method was compared with manual tracing on cardiac cine MRI data of 45 consecutive patients. Of the 45 patients, LV-FAST and manual selection identified the same apical slices at both ED and ES and the same basal slices at both ED and ES in 38, 38, 38, and 41 cases, respectively, and their measurements agreed within -1.6 ± 8.7 mL, -1.4 ± 7.8 mL, and 1.0 ± 5.8% for EDV, ESV, and EF, respectively. LV-FAST allowed LV volume-time course quantitatively measured within 3 seconds on a standard desktop computer, which is fast and accurate for processing the cine volumetric cardiac MRI data, and enables LV filling course quantification over the cardiac cycle.
Collapse
Affiliation(s)
- Lijia Wang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, Shanghai, China
- Department of Radiology, Weill Cornell Medical College, New York, NY 10022, USA
| | - Mengchao Pei
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, Shanghai, China
| | - Noel C. F. Codella
- Multimedia Research, IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
| | - Minisha Kochar
- Department of Medicine-Cardiology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Jonathan W. Weinsaft
- Department of Radiology, Weill Cornell Medical College, New York, NY 10022, USA
- Department of Medicine-Cardiology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, Shanghai, China
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medical College, New York, NY 10022, USA
| | - Yi Wang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, Shanghai, China
- Department of Radiology, Weill Cornell Medical College, New York, NY 10022, USA
- Department of Medicine-Cardiology, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446701, Republic of Korea
| |
Collapse
|
33
|
Fabijanska A, Goclawski J. The segmentation of 3D images using the random walking technique on a randomly created image adjacency graph. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2015; 24:524-537. [PMID: 25532181 DOI: 10.1109/tip.2014.2383323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper considers the problem of image segmentation using the random walker algorithm. In the case of 3D images, the method uses an extreme amount of memory and time resources. These are required in order to represent the corresponding enormous image graph and to solve the resulting sparse linear system. Having in mind these limitations, this paper proposes techniques for the optimization of the random walker approach. The optimization is obtained by processing supervoxels representing homogeneous image regions rather than single voxels. A fast and efficient method for supervoxel determination is introduced. A method for the creation of an image adjacency graph from an irregular grid of supervoxels is also proposed. The results of applying the introduced approach to segmentation of 3D CT data sets are presented and compared with the results of the original random walker approach and other state-of-the-art methods. The accuracy and the computational overhead is regarded in the comparison. The analysis of results shows that the modified method can be successfully applied for the segmentation of volumetric images and provides results in a reasonable time without a significant loss in the image segmentation accuracy. It also outperforms the state-of-the-art methods considered in the comparison.
Collapse
|
34
|
Yang X, Su Y, Wan M, Yeo SY, Lim C, Wong ST, Zhong L, Tan RS. Left ventricle segmentation by dynamic shape constrained random walks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4723-6. [PMID: 25571047 DOI: 10.1109/embc.2014.6944679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accurate and robust extraction of the left ventricle (LV) cavity is a key step for quantitative analysis of cardiac functions. In this study, we propose an improved LV cavity segmentation method that incorporates a dynamic shape constraint into the weighting function of the random walks algorithm. The method involves an iterative process that updates an intermediate result to the desired solution. The shape constraint restricts the solution space of the segmentation result, such that the robustness of the algorithm is increased to handle misleading information that emanates from noise, weak boundaries, and clutter. Our experiments on real cardiac magnetic resonance images demonstrate that the proposed method obtains better segmentation performance than standard method.
Collapse
|
35
|
Automatic segmentation of the left ventricle in cardiac MRI using local binary fitting model and dynamic programming techniques. PLoS One 2014; 9:e114760. [PMID: 25500580 PMCID: PMC4263664 DOI: 10.1371/journal.pone.0114760] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022] Open
Abstract
Segmentation of the left ventricle is very important to quantitatively analyze global and regional cardiac function from magnetic resonance. The aim of this study is to develop a novel algorithm for segmenting left ventricle on short-axis cardiac magnetic resonance images (MRI) to improve the performance of computer-aided diagnosis (CAD) systems. In this research, an automatic segmentation method for left ventricle is proposed on the basis of local binary fitting (LBF) model and dynamic programming techniques. The validation experiments are performed on a pool of data sets of 45 cases. For both endo- and epi-cardial contours of our results, percentage of good contours is about 93.5%, the average perpendicular distance are about 2 mm. The overlapping dice metric is about 0.91. The regression and determination coefficient between the experts and our proposed method on the LV mass is 1.038 and 0.9033, respectively; they are 1.076 and 0.9386 for ejection fraction (EF). The proposed segmentation method shows the better performance and has great potential in improving the accuracy of computer-aided diagnosis systems in cardiovascular diseases.
Collapse
|
36
|
Queirós S, Barbosa D, Heyde B, Morais P, Vilaça JL, Friboulet D, Bernard O, D’hooge J. Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal 2014; 18:1115-31. [DOI: 10.1016/j.media.2014.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/05/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|