1
|
Liu CK, Huang HM. A Novel Self-Supervised Learning-Based Method for Dynamic CT Brain Perfusion Imaging. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01341-1. [PMID: 39633209 DOI: 10.1007/s10278-024-01341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Dynamic computed tomography (CT)-based brain perfusion imaging is a non-invasive technique that can provide quantitative measurements of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT). However, due to high radiation dose, dynamic CT scan with a low tube voltage and current protocol is commonly used. Because of this reason, the increased noise degrades the quality and reliability of perfusion maps. In this study, we aim to propose and investigate the feasibility of utilizing a convolutional neural network and a bi-directional long short-term memory model with an attention mechanism to self-supervisedly yield the impulse residue function (IRF) from dynamic CT images. Then, the predicted IRF can be used to compute the perfusion parameters. We evaluated the performance of the proposed method using both simulated and real brain perfusion data and compared the results with those obtained from two existing methods: singular value decomposition and tensor total-variation. The simulation results showed that the overall performance of parameter estimation obtained from the proposed method was superior to that obtained from the other two methods. The experimental results showed that the perfusion maps calculated from the three studied methods were visually similar, but small and significant differences in perfusion parameters between the proposed method and the other two methods were found. We also observed that there were several low-CBF and low-CBV lesions (i.e., suspected infarct core) found by all comparing methods, but only the proposed method revealed longer MTT. The proposed method has the potential to self-supervisedly yield reliable perfusion maps from dynamic CT images.
Collapse
Affiliation(s)
- Chi-Kuang Liu
- Department of Medical Imaging, Changhua Christian Hospital, 135 Nanxiao St., Changhua County 500, Taiwan
| | - Hsuan-Ming Huang
- Institute of Medical Device and Imaging, College of Medicine, Zhongzheng Dist, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei City, 100, Taiwan.
- Program for Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, Zhongzheng Dist., National Taiwan University, No.1, Sec. 1, Jen Ai Rd., Taipei City, 100, Taiwan.
| |
Collapse
|
2
|
Shah SP, Heiss JD. Artificial Intelligence as A Complementary Tool for Clincal Decision-Making in Stroke and Epilepsy. Brain Sci 2024; 14:228. [PMID: 38539617 PMCID: PMC10968980 DOI: 10.3390/brainsci14030228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 01/05/2025] Open
Abstract
Neurology is a quickly evolving specialty that requires clinicians to make precise and prompt diagnoses and clinical decisions based on the latest evidence-based medicine practices. In all Neurology subspecialties-Stroke and Epilepsy in particular-clinical decisions affecting patient outcomes depend on neurologists accurately assessing patient disability. Artificial intelligence [AI] can predict the expected neurological impairment from an AIS [Acute Ischemic Stroke], the possibility of ICH [IntraCranial Hemorrhage] expansion, and the clinical outcomes of comatose patients. This review article informs readers of artificial intelligence principles and methods. The article introduces the basic terminology of artificial intelligence before reviewing current and developing AI applications in neurology practice. AI holds promise as a tool to ease a neurologist's daily workflow and supply unique diagnostic insights by analyzing data simultaneously from several sources, including neurological history and examination, blood and CSF laboratory testing, CNS electrophysiologic evaluations, and CNS imaging studies. AI-based methods are poised to complement the other tools neurologists use to make prompt and precise decisions that lead to favorable patient outcomes.
Collapse
Affiliation(s)
- Smit P. Shah
- Resident Physician, University of South Carolina School of Medicine, PRISMA Health Richland, Columbia, SC 29203, USA
| | - John D. Heiss
- Senior Clinician and Neurosurgical Residency Director, Surgical Neurology Branch [SNB], Building 10, Room 3D20, 10 Center Drive, Bethesda, MD 20814, USA;
| |
Collapse
|
3
|
Niu S, Li S, Huang S, Liang L, Tang S, Wang T, Yu G, Niu T, Wang J, Ma J. Adaptive prior image constrained total generalized variation for low-dose dynamic cerebral perfusion CT reconstruction. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:1429-1447. [PMID: 39302409 DOI: 10.3233/xst-240104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Dynamic cerebral perfusion CT (DCPCT) can provide valuable insight into cerebral hemodynamics by visualizing changes in blood within the brain. However, the associated high radiation dose of the standard DCPCT scanning protocol has been a great concern for the patient and radiation physics. Minimizing the x-ray exposure to patients has been a major effort in the DCPCT examination. A simple and cost-effective approach to achieve low-dose DCPCT imaging is to lower the x-ray tube current in data acquisition. However, the image quality of low-dose DCPCT will be degraded because of the excessive quantum noise. OBJECTIVE To obtain high-quality DCPCT images, we present a statistical iterative reconstruction (SIR) algorithm based on penalized weighted least squares (PWLS) using adaptive prior image constrained total generalized variation (APICTGV) regularization (PWLS-APICTGV). METHODS APICTGV regularization uses the precontrast scanned high-quality CT image as an adaptive structural prior for low-dose PWLS reconstruction. Thus, the image quality of low-dose DCPCT is improved while essential features of targe image are well preserved. An alternating optimization algorithm is developed to solve the cost function of the PWLS-APICTGV reconstruction. RESULTS PWLS-APICTGV algorithm was evaluated using a digital brain perfusion phantom and patient data. Compared to other competing algorithms, the PWLS-APICTGV algorithm shows better noise reduction and structural details preservation. Furthermore, the PWLS-APICTGV algorithm can generate more accurate cerebral blood flow (CBF) map than that of other reconstruction methods. CONCLUSIONS PWLS-APICTGV algorithm can significantly suppress noise while preserving the important features of the reconstructed DCPCT image, thus achieving a great improvement in low-dose DCPCT imaging.
Collapse
Affiliation(s)
- Shanzhou Niu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
- Ganzhou Key Laboratory of Computational Imaging, Gannan Normal University, Ganzhou, China
| | - Shuo Li
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Shuyan Huang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Lijing Liang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Sizhou Tang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Tinghua Wang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Gaohang Yu
- School of Science, Hangzhou Dianzi University, Hangzhou, China
| | - Tianye Niu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zeng D, Zeng C, Zeng Z, Li S, Deng Z, Chen S, Bian Z, Ma J. Basis and current state of computed tomography perfusion imaging: a review. Phys Med Biol 2022; 67. [PMID: 35926503 DOI: 10.1088/1361-6560/ac8717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
Abstract
Computed tomography perfusion (CTP) is a functional imaging that allows for providing capillary-level hemodynamics information of the desired tissue in clinics. In this paper, we aim to offer insight into CTP imaging which covers the basics and current state of CTP imaging, then summarize the technical applications in the CTP imaging as well as the future technological potential. At first, we focus on the fundamentals of CTP imaging including systematically summarized CTP image acquisition and hemodynamic parameter map estimation techniques. A short assessment is presented to outline the clinical applications with CTP imaging, and then a review of radiation dose effect of the CTP imaging on the different applications is presented. We present a categorized methodology review on known and potential solvable challenges of radiation dose reduction in CTP imaging. To evaluate the quality of CTP images, we list various standardized performance metrics. Moreover, we present a review on the determination of infarct and penumbra. Finally, we reveal the popularity and future trend of CTP imaging.
Collapse
Affiliation(s)
- Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Cuidie Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhixiong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhen Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sijin Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| |
Collapse
|
5
|
Sudarshan VP, Reddy PK, Gubbi J, Purushothaman B. Forward Model and Deep Learning Based Iterative Deconvolution for Robust Dynamic CT Perfusion. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3543-3546. [PMID: 34892004 DOI: 10.1109/embc46164.2021.9630969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Perfusion maps obtained from low-dose computed tomography (CT) data suffer from poor signal to noise ratio. To enhance the quality of the perfusion maps, several works rely on denoising the low-dose CT (LD-CT) images followed by conventional regularized deconvolution. Recent works employ deep neural networks (DNN) for learning a direct mapping between the noisy and the clean perfusion maps ignoring the convolution-based forward model. DNN-based methods are not robust to practical variations in the data that are seen in real-world applications such as stroke. In this work, we propose an iterative framework that combines the perfusion forward model with a DNN-based regularizer to obtain perfusion maps directly from the LD-CT dynamic data. To improve the robustness of the DNN, we leverage the anatomical information from the contrast-enhanced LD-CT images to learn the mapping between low-dose and standard-dose perfusion maps. Through empirical experiments, we show that our model is robust both qualitatively and quantitatively to practical perturbations in the data.
Collapse
|
6
|
Niu S, Liu H, Zhang M, Wang M, Wang J, Ma J. Iterative reconstruction for low-dose cerebral perfusion computed tomography using prior image induced diffusion tensor. Phys Med Biol 2021; 66. [PMID: 34081027 DOI: 10.1088/1361-6560/ac0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Cerebral perfusion computed tomography (CPCT) can depict the functional status of cerebral circulation at the tissue level; hence, it has been increasingly used to diagnose patients with cerebrovascular disease. However, there is a significant concern that CPCT scanning protocol could expose patients to excessive radiation doses. Although reducing the x-ray tube current when acquiring CPCT projection data is an effective method for reducing radiation dose, this technique usually results in degraded image quality. To enhance the image quality of low-dose CPCT, we present a prior image induced diffusion tensor (PIDT) for statistical iterative reconstruction, based on the penalized weighted least-squares (PWLS) criterion, which we referred to as PWLS-PIDT, for simplicity. Specifically, PIDT utilizes the geometric features of pre-contrast scanned high-quality CT image as a structure prior for PWLS reconstruction; therefore, the low-dose CPCT images are enhanced while preserving important features in the target image. An effective alternating minimization algorithm is developed to solve the associated objective function in the PWLS-PIDT reconstruction. We conduct qualitative and quantitative studies to evaluate the PWLS-PIDT reconstruction with a digital brain perfusion phantom and patient data. With this method, the noise in the reconstructed CPCT images is more substantially reduced than that of other competing methods, without sacrificing structural details significantly. Furthermore, the CPCT sequential images reconstructed via the PWLS-PIDT method can derive more accurate hemodynamic parameter maps than those of other competing methods.
Collapse
Affiliation(s)
- Shanzhou Niu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Hong Liu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Mengzhen Zhang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Min Wang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
7
|
Li S, Zeng D, Bian Z, Li D, Zhu M, Huang J, Ma J. Learning non-local perfusion textures for high-quality computed tomography perfusion imaging. Phys Med Biol 2021; 66. [PMID: 33910178 DOI: 10.1088/1361-6560/abfc90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/28/2021] [Indexed: 11/11/2022]
Abstract
Background. Computed tomography perfusion (CTP) imaging plays a critical role in the acute stroke syndrome assessment due to its widespread availability, speed of image acquisition, and relatively low cost. However, due to its repeated scanning protocol, CTP imaging involves a substantial radiation dose, which might increase potential cancer risks.Methods. In this work, we present a novel deep learning model called non-local perfusion texture learning network (NPTN) for high-quality CTP imaging at low-dose cases. Specifically, considering abundant similarities in the CTP images, i.e. latent self-similarities within the non-local region in the CTP images, we firstly search the most similar pixels from the adjacent frames within a fixed search window to obtain the non-local similarities and to construct non-local textures vector. Then, both the low-dose frame and these non-local textures from adjacent frames are fed into a convolution neural network to predict high-quality CTP images, which can help better characterize the structure details and contrast variants in the targeted CTP image rather than simply utilizing the targeted frame itself. The residual learning strategy and batch normalization are utilized to boost the performance of the convolution neural network. In the experiment, the CTP images of 31 patients with suspected stroke disease are collected to demonstrate the performance of the presented NPTN method.Results. The results show the presented NPTN method obtains superior performance compared with the competing methods. From numerical value, at all dose levels, the presented NPTN method has achieved around 3.0 dB improvement of average PSNR, an increase of around 1.4% of average SSIM, and a decrease of around 4.8% of average RMSE in the low-dose CTP reconstruction task, and also has achieved an increase of around 3.4% of average SSIM and a decrease of around 61.1% of average RMSE in the cerebral blood flow (CBF) estimation task.Conclusions. The presented NPTN method can obtain high-quality CTP images and estimate high-accuracy CBF map by characterizing more structure details and contrast variants in the CTP image and outperform the competing methods at low-dose cases.
Collapse
Affiliation(s)
- Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Dong Zeng
- College of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Danyang Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Manman Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jing Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.,Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048, People's Republic of China.,Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, People's Republic of China
| |
Collapse
|
8
|
Wu D, Ren H, Li Q. Self-Supervised Dynamic CT Perfusion Image Denoising With Deep Neural Networks. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.2996566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold CW. A Machine Learning Approach for Classifying Ischemic Stroke Onset Time From Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1666-1676. [PMID: 30802855 PMCID: PMC6661120 DOI: 10.1109/tmi.2019.2901445] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Current clinical practice relies on clinical history to determine the time since stroke (TSS) onset. Imaging-based determination of acute stroke onset time could provide critical information to clinicians in deciding stroke treatment options, such as thrombolysis. The patients with unknown or unwitnessed TSS are usually excluded from thrombolysis, even if their symptoms began within the therapeutic window. In this paper, we demonstrate a machine learning approach for TSS classification using routinely acquired imaging sequences. We develop imaging features from the magnetic resonance (MR) images and train machine learning models to classify the TSS. We also propose a deep-learning model to extract hidden representations for the MR perfusion-weighted images and demonstrate classification improvement by incorporating these additional deep features. The cross-validation results show that our best classifier achieved an area under the curve of 0.765, with a sensitivity of 0.788 and a negative predictive value of 0.609, outperforming existing methods. We show that the features generated by our deep-learning algorithm correlate with the MR imaging features, and validate the robustness of the model on imaging parameter variations (e.g., year of imaging). This paper advances magnetic resonance imaging analysis one-step-closer to an operational decision support tool for stroke treatment guidance.
Collapse
|
10
|
Xiao Y, Liu P, Liang Y, Stolte S, Sanelli P, Gupta A, Ivanidze J, Fang R. STIR-Net: Deep Spatial-Temporal Image Restoration Net for Radiation Reduction in CT Perfusion. Front Neurol 2019; 10:647. [PMID: 31297079 PMCID: PMC6607281 DOI: 10.3389/fneur.2019.00647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/03/2019] [Indexed: 02/04/2023] Open
Abstract
Computed Tomography Perfusion (CTP) imaging is a cost-effective and fast approach to provide diagnostic images for acute stroke treatment. Its cine scanning mode allows the visualization of anatomic brain structures and blood flow; however, it requires contrast agent injection and continuous CT scanning over an extended time. In fact, the accumulative radiation dose to patients will increase health risks such as skin irritation, hair loss, cataract formation, and even cancer. Solutions for reducing radiation exposure include reducing the tube current and/or shortening the X-ray radiation exposure time. However, images scanned at lower tube currents are usually accompanied by higher levels of noise and artifacts. On the other hand, shorter X-ray radiation exposure time with longer scanning intervals will lead to image information that is insufficient to capture the blood flow dynamics between frames. Thus, it is critical for us to seek a solution that can preserve the image quality when the tube current and the temporal frequency are both low. We propose STIR-Net in this paper, an end-to-end spatial-temporal convolutional neural network structure, which exploits multi-directional automatic feature extraction and image reconstruction schema to recover high-quality CT slices effectively. With the inputs of low-dose and low-resolution patches at different cross-sections of the spatio-temporal data, STIR-Net blends the features from both spatial and temporal domains to reconstruct high-quality CT volumes. In this study, we finalize extensive experiments to appraise the image restoration performance at different levels of tube current and spatial and temporal resolution scales.The results demonstrate the capability of our STIR-Net to restore high-quality scans at as low as 11% of absorbed radiation dose of the current imaging protocol, yielding an average of 10% improvement for perfusion maps compared to the patch-based log likelihood method.
Collapse
Affiliation(s)
- Yao Xiao
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Peng Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Yun Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Skylar Stolte
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Pina Sanelli
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
- Imaging Clinical Effectiveness and Outcomes Research, Department of Radiology, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Health Innovations and Outcomes Research, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Ho KC, Scalzo F, Sarma KV, Speier W, El-Saden S, Arnold C. Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images. J Med Imaging (Bellingham) 2019; 6:026001. [PMID: 31131293 PMCID: PMC6529818 DOI: 10.1117/1.jmi.6.2.026001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023] Open
Abstract
Predicting infarct volume from magnetic resonance perfusion-weighted imaging can provide helpful information to clinicians in deciding how aggressively to treat acute stroke patients. Models have been developed to predict tissue fate, yet these models are mostly built using hand-crafted features (e.g., time-to-maximum) derived from perfusion images, which are sensitive to deconvolution methods. We demonstrate the application of deep convolution neural networks (CNNs) on predicting final stroke infarct volume using only the source perfusion images. We propose a deep CNN architecture that improves feature learning and achieves an area under the curve of 0.871 ± 0.024 , outperforming existing tissue fate models. We further validate the proposed deep CNN with existing 2-D and 3-D deep CNNs for images/video classification, showing the importance of the proposed architecture. Our work leverages deep learning techniques in stroke tissue outcome prediction, advancing magnetic resonance imaging perfusion analysis one step closer to an operational decision support tool for stroke treatment guidance.
Collapse
Affiliation(s)
- King Chung Ho
- University of California, Los Angeles, Department of Bioengineering, Los Angeles, California, United States
| | - Fabien Scalzo
- University of California, Los Angeles, Department of Computer Science, Los Angeles, California, United States
| | - Karthik V. Sarma
- University of California, Los Angeles, Department of Bioengineering, Los Angeles, California, United States
| | - William Speier
- University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, California, United States
| | - Suzie El-Saden
- University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, California, United States
| | - Corey Arnold
- University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, California, United States
| |
Collapse
|
12
|
Kadimesetty VS, Gutta S, Ganapathy S, Yalavarthy PK. Convolutional Neural Network-Based Robust Denoising of Low-Dose Computed Tomography Perfusion Maps. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2860788] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Zhang S, Zeng D, Niu S, Zhang H, Xu H, Li S, Qiu S, Ma J. High-fidelity image deconvolution for low-dose cerebral perfusion CT imaging via low-rank and total variation regularizations. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.09.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Machine Learning in Neurooncology Imaging: From Study Request to Diagnosis and Treatment. AJR Am J Roentgenol 2018; 212:52-56. [PMID: 30403523 DOI: 10.2214/ajr.18.20328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Machine learning has potential to play a key role across a variety of medical imaging applications. This review seeks to elucidate the ways in which machine learning can aid and enhance diagnosis, treatment, and follow-up in neurooncology. CONCLUSION Given the rapid pace of development in machine learning over the past several years, a basic proficiency of the key tenets and use cases in the field is critical to assessing potential opportunities and challenges of this exciting new technology.
Collapse
|
15
|
Hong X, Zan Y, Weng F, Tao W, Peng Q, Huang Q. Enhancing the Image Quality via Transferred Deep Residual Learning of Coarse PET Sinograms. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2322-2332. [PMID: 29993685 DOI: 10.1109/tmi.2018.2830381] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Increasing the image quality of positron emission tomography (PET) is an essential topic in the PET community. For instance, thin-pixelated crystals have been used to provide high spatial resolution images but at the cost of sensitivity and manufacture expense. In this paper, we proposed an approach to enhance the PET image resolution and noise property for PET scanners with large pixelated crystals. To address the problem of coarse blurred sinograms with large parallax errors associated with large crystals, we developed a data-driven, single-image super-resolution (SISR) method for sinograms, based on the novel deep residual convolutional neural network (CNN). Unlike the CNN-based SISR on natural images, periodically padded sinogram data and dedicated network architecture were used to make it more efficient for PET imaging. Moreover, we included the transfer learning scheme in the approach to process cases with poor labeling and small training data set. The approach was validated via analytically simulated data (with and without noise), Monte Carlo simulated data, and pre-clinical data. Using the proposed method, we could achieve comparable image resolution and better noise property with large crystals of bin sizes of thin crystals with a bin size from to . Our approach uses external PET data as the prior knowledge for training and does not require additional information during inference. Meanwhile, the method can be added into the normal PET imaging framework seamlessly, thus potentially finds its application in designing low-cost high-performance PET systems.
Collapse
|
16
|
Ho KC, Speier W, El-Saden S, Arnold CW. Classifying Acute Ischemic Stroke Onset Time using Deep Imaging Features. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2018; 2017:892-901. [PMID: 29854156 PMCID: PMC5977679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Models have been developed to predict stroke outcomes (e.g., mortality) in attempt to provide better guidance for stroke treatment. However, there is little work in developing classification models for the problem of unknown time-since-stroke (TSS), which determines a patient's treatment eligibility based on a clinical defined cutoff time point (i.e., <4.5hrs). In this paper, we construct and compare machine learning methods to classify TSS<4.5hrs using magnetic resonance (MR) imaging features. We also propose a deep learning model to extract hidden representations from the MR perfusion-weighted images and demonstrate classification improvement by incorporating these additional imaging features. Finally, we discuss a strategy to visualize the learned features from the proposed deep learning model. The cross-validation results show that our best classifier achieved an area under the curve of 0.68, which improves significantly over current clinical methods (0.58), demonstrating the potential benefit of using advanced machine learning methods in TSS classification.
Collapse
Affiliation(s)
- King Chung Ho
- Department of Bioengineering; University of California, Los Angeles, CA
- Medical Imaging Informatics; University of California, Los Angeles, CA
| | - William Speier
- Medical Imaging Informatics; University of California, Los Angeles, CA
| | - Suzie El-Saden
- Medical Imaging Informatics; University of California, Los Angeles, CA
| | - Corey W Arnold
- Department of Bioengineering; University of California, Los Angeles, CA
- Medical Imaging Informatics; University of California, Los Angeles, CA
- Department of Radiological Sciences, University of California, Los Angeles, CA
| |
Collapse
|
17
|
Zeng D, Xie Q, Cao W, Lin J, Zhang H, Zhang S, Huang J, Bian Z, Meng D, Xu Z, Liang Z, Chen W, Ma J. Low-Dose Dynamic Cerebral Perfusion Computed Tomography Reconstruction via Kronecker-Basis-Representation Tensor Sparsity Regularization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:2546-2556. [PMID: 28880164 PMCID: PMC5711606 DOI: 10.1109/tmi.2017.2749212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Dynamic cerebral perfusion computed tomography (DCPCT) has the ability to evaluate the hemodynamic information throughout the brain. However, due to multiple 3-D image volume acquisitions protocol, DCPCT scanning imposes high radiation dose on the patients with growing concerns. To address this issue, in this paper, based on the robust principal component analysis (RPCA, or equivalently the low-rank and sparsity decomposition) model and the DCPCT imaging procedure, we propose a new DCPCT image reconstruction algorithm to improve low-dose DCPCT and perfusion maps quality via using a powerful measure, called Kronecker-basis-representation tensor sparsity regularization, for measuring low-rankness extent of a tensor. For simplicity, the first proposed model is termed tensor-based RPCA (T-RPCA). Specifically, the T-RPCA model views the DCPCT sequential images as a mixture of low-rank, sparse, and noise components to describe the maximum temporal coherence of spatial structure among phases in a tensor framework intrinsically. Moreover, the low-rank component corresponds to the "background" part with spatial-temporal correlations, e.g., static anatomical contribution, which is stationary over time about structure, and the sparse component represents the time-varying component with spatial-temporal continuity, e.g., dynamic perfusion enhanced information, which is approximately sparse over time. Furthermore, an improved nonlocal patch-based T-RPCA (NL-T-RPCA) model which describes the 3-D block groups of the "background" in a tensor is also proposed. The NL-T-RPCA model utilizes the intrinsic characteristics underlying the DCPCT images, i.e., nonlocal self-similarity and global correlation. Two efficient algorithms using alternating direction method of multipliers are developed to solve the proposed T-RPCA and NL-T-RPCA models, respectively. Extensive experiments with a digital brain perfusion phantom, preclinical monkey data, and clinical patient data clearly demonstrate that the two proposed models can achieve more gains than the existing popular algorithms in terms of both quantitative and visual quality evaluations from low-dose acquisitions, especially as low as 20 mAs.
Collapse
|
18
|
[Sinogram restoration for low-dose cerebral perfusion CT images]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37. [PMID: 28446398 PMCID: PMC6744093 DOI: 10.3969/j.issn.1673-4254.2017.04.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In clinical cerebral perfusion CT examination, repeated scanning the region of interest in the cine mode increases the radiation dose of the patients, while decreasing the radiation dose by lowering the scanning current results in poor image quality and affects the clinical diagnosis. We propose a penalized weighted least-square (PWLS) method for recovering the projection data to improve the quality of low-dose cerebral perfusion CT imaged. This method incorporates the statistical distribution characteristics of brain perfusion CT projection data and uses the statistical properties of the projection data for modeling. The PWLS method was used to recover the data, and the Gauss-Seidel (GS) method was employed for iterative solving. Adaptive weighting is introduced between the original projection data and the projection data after PWLS restoration. The experimental results on the clinical data demonstrated that the PWLS-based sinogram restoration method improved noise reduction and artifact suppression as compared with the conventional noise reduction methods, and better retained the edges and details to generate better cerebral perfusion maps.
Collapse
|
19
|
Tan C, Li K, Yan Z, Yi J, Wu P, Yu HJ, Engelke K, Metaxas DN. Towards large-scale MR thigh image analysis via an integrated quantification framework. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Zeng D, Zhang X, Bian Z, Huang J, Zhang H, Lu L, Lyu W, Zhang J, Feng Q, Chen W, Ma J. Cerebral perfusion computed tomography deconvolution via structure tensor total variation regularization. Med Phys 2017; 43:2091. [PMID: 27147322 DOI: 10.1118/1.4944866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Cerebral perfusion computed tomography (PCT) imaging as an accurate and fast acute ischemic stroke examination has been widely used in clinic. Meanwhile, a major drawback of PCT imaging is the high radiation dose due to its dynamic scan protocol. The purpose of this work is to develop a robust perfusion deconvolution approach via structure tensor total variation (STV) regularization (PD-STV) for estimating an accurate residue function in PCT imaging with the low-milliampere-seconds (low-mAs) data acquisition. METHODS Besides modeling the spatio-temporal structure information of PCT data, the STV regularization of the present PD-STV approach can utilize the higher order derivatives of the residue function to enhance denoising performance. To minimize the objective function, the authors propose an effective iterative algorithm with a shrinkage/thresholding scheme. A simulation study on a digital brain perfusion phantom and a clinical study on an old infarction patient were conducted to validate and evaluate the performance of the present PD-STV approach. RESULTS In the digital phantom study, visual inspection and quantitative metrics (i.e., the normalized mean square error, the peak signal-to-noise ratio, and the universal quality index) assessments demonstrated that the PD-STV approach outperformed other existing approaches in terms of the performance of noise-induced artifacts reduction and accurate perfusion hemodynamic maps (PHM) estimation. In the patient data study, the present PD-STV approach could yield accurate PHM estimation with several noticeable gains over other existing approaches in terms of visual inspection and correlation analysis. CONCLUSIONS This study demonstrated the feasibility and efficacy of the present PD-STV approach in utilizing STV regularization to improve the accuracy of residue function estimation of cerebral PCT imaging in the case of low-mAs.
Collapse
Affiliation(s)
- Dong Zeng
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinyu Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhaoying Bian
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Huang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hua Zhang
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijun Lu
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wenbing Lyu
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qianjin Feng
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wufan Chen
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianhua Ma
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
21
|
Manniesing R, Brune C, van Ginneken B, Prokop M. A 4D CT digital phantom of an individual human brain for perfusion analysis. PeerJ 2016; 4:e2683. [PMID: 27917312 PMCID: PMC5134368 DOI: 10.7717/peerj.2683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/13/2016] [Indexed: 11/22/2022] Open
Abstract
Brain perfusion is of key importance to assess brain function. Modern CT scanners can acquire perfusion maps of the cerebral parenchyma in vivo at submillimeter resolution. These perfusion maps give insights into the hemodynamics of the cerebral parenchyma and are critical for example for treatment decisions in acute stroke. However, the relations between acquisition parameters, tissue attenuation curves, and perfusion values are still poorly understood and cannot be unraveled by studies involving humans because of ethical concerns. We present a 4D CT digital phantom specific for an individual human brain to analyze these relations in a bottom-up fashion. Validation of the signal and noise components was based on 1,000 phantom simulations of 20 patient imaging data. This framework was applied to quantitatively assess the relation between radiation dose and perfusion values, and to quantify the signal-to-noise ratios of penumbra regions with decreasing sizes in white and gray matter. This is the first 4D CT digital phantom that enables to address clinical questions without having to expose the patient to additional radiation dose.
Collapse
Affiliation(s)
- Rashindra Manniesing
- Department of Radiology and Nuclear Medicine, Radboud UMC , Nijmegen , The Netherlands
| | - Christoph Brune
- Department of Applied Mathematics, University of Twente , Enschede , The Netherlands
| | - Bram van Ginneken
- Department of Radiology and Nuclear Medicine, Radboud UMC , Nijmegen , The Netherlands
| | - Mathias Prokop
- Department of Radiology and Nuclear Medicine, Radboud UMC , Nijmegen , The Netherlands
| |
Collapse
|
22
|
Tian X, Zeng D, Zhang S, Huang J, Zhang H, He J, Lu L, Xi W, Ma J, Bian Z. Robust low-dose dynamic cerebral perfusion CT image restoration via coupled dictionary learning scheme. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2016; 24:837-853. [PMID: 27612048 DOI: 10.3233/xst-160593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dynamic cerebral perfusion x-ray computed tomography (PCT) imaging has been advocated to quantitatively and qualitatively assess hemodynamic parameters in the diagnosis of acute stroke or chronic cerebrovascular diseases. However, the associated radiation dose is a significant concern to patients due to its dynamic scan protocol. To address this issue, in this paper we propose an image restoration method by utilizing coupled dictionary learning (CDL) scheme to yield clinically acceptable PCT images with low-dose data acquisition. Specifically, in the present CDL scheme, the 2D background information from the average of the baseline time frames of low-dose unenhanced CT images and the 3D enhancement information from normal-dose sequential cerebral PCT images are exploited to train the dictionary atoms respectively. After getting the two trained dictionaries, we couple them to represent the desired PCT images as spatio-temporal prior in objective function construction. Finally, the low-dose dynamic cerebral PCT images are restored by using a general DL image processing. To get a robust solution, the objective function is solved by using a modified dictionary learning based image restoration algorithm. The experimental results on clinical data show that the present method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the state-of-the-art methods.
Collapse
Affiliation(s)
- Xiumei Tian
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanli Zhang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Ji He
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Lijun Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiwen Xi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Abstract
Stroke is the leading cause of long-term disability and the second leading cause of mortality in the world, and exerts an enormous burden on the public health. Computed Tomography (CT) remains one of the most widely used imaging modality for acute stroke diagnosis. However when coupled with CT perfusion, the excessive radiation exposure in repetitive imaging to assess treatment response and prognosis has raised significant public concerns regarding its potential hazards to both short- and long-term health outcomes. Tensor total variation has been proposed to reduce the necessary radiation dose in CT perfusion without comprising the image quality by fusing the information of the local anatomical structure with the temporal blood flow model. However the local search in the TTV framework fails to leverage the non-local information in the spatio-temporal data. In this paper, we propose TENDER, an efficient framework of non-local tensor deconvolution to maintain the accuracy of the hemodynamic parameters and the diagnostic reliability in low radiation dose CT perfusion. The tensor total variation is extended using non-local spatio-temporal cubics for regularization, and an efficient algorithm is proposed to reduce the time complexity with speedy similarity computation. Evaluations on clinical data of patients subjects with cerebrovascular disease and normal subjects demonstrate the advantage of non-local tensor deconvolution for reducing radiation dose in CT perfusion.
Collapse
|
24
|
Segmentation of Hyperacute Cerebral Infarcts Based on Sparse Representation of Diffusion Weighted Imaging. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:2581676. [PMID: 27746825 PMCID: PMC5056007 DOI: 10.1155/2016/2581676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 11/18/2022]
Abstract
Segmentation of infarcts at hyperacute stage is challenging as they exhibit substantial variability which may even be hard for experts to delineate manually. In this paper, a sparse representation based classification method is explored. For each patient, four volumetric data items including three volumes of diffusion weighted imaging and a computed asymmetry map are employed to extract patch features which are then fed to dictionary learning and classification based on sparse representation. Elastic net is adopted to replace the traditionalL0-norm/L1-norm constraints on sparse representation to stabilize sparse code. To decrease computation cost and to reduce false positives, regions-of-interest are determined to confine candidate infarct voxels. The proposed method has been validated on 98 consecutive patients recruited within 6 hours from onset. It is shown that the proposed method could handle well infarcts with intensity variability and ill-defined edges to yield significantly higher Dice coefficient (0.755 ± 0.118) than the other two methods and their enhanced versions by confining their segmentations within the regions-of-interest (average Dice coefficient less than 0.610). The proposed method could provide a potential tool to quantify infarcts from diffusion weighted imaging at hyperacute stage with accuracy and speed to assist the decision making especially for thrombolytic therapy.
Collapse
|
25
|
Classification of multiple sclerosis lesions using adaptive dictionary learning. Comput Med Imaging Graph 2015; 46 Pt 1:2-10. [DOI: 10.1016/j.compmedimag.2015.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/24/2015] [Accepted: 05/06/2015] [Indexed: 11/22/2022]
|
26
|
Zhou J, Yan Z, Lasio G, Huang J, Zhang B, Sharma N, Prado K, D'Souza W. Automated compromised right lung segmentation method using a robust atlas-based active volume model with sparse shape composition prior in CT. Comput Med Imaging Graph 2015; 46 Pt 1:47-55. [PMID: 26256737 DOI: 10.1016/j.compmedimag.2015.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/11/2015] [Accepted: 07/04/2015] [Indexed: 10/23/2022]
Abstract
To resolve challenges in image segmentation in oncologic patients with severely compromised lung, we propose an automated right lung segmentation framework that uses a robust, atlas-based active volume model with a sparse shape composition prior. The robust atlas is achieved by combining the atlas with the output of sparse shape composition. Thoracic computed tomography images (n=38) from patients with lung tumors were collected. The right lung in each scan was manually segmented to build a reference training dataset against which the performance of the automated segmentation method was assessed. The quantitative results of this proposed segmentation method with sparse shape composition achieved mean Dice similarity coefficient (DSC) of (0.72, 0.81) with 95% CI, mean accuracy (ACC) of (0.97, 0.98) with 95% CI, and mean relative error (RE) of (0.46, 0.74) with 95% CI. Both qualitative and quantitative comparisons suggest that this proposed method can achieve better segmentation accuracy with less variance than other atlas-based segmentation methods in the compromised lung segmentation.
Collapse
Affiliation(s)
- Jinghao Zhou
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Zhennan Yan
- Department of Computer Science, Rutgers, The State University of New Jersey, NJ, USA
| | - Giovanni Lasio
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Junzhou Huang
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA
| | - Baoshe Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Navesh Sharma
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karl Prado
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Warren D'Souza
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Sanelli PC. Robust Low-Dose CT Perfusion Deconvolution via Tensor Total-Variation Regularization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1533-1548. [PMID: 25706579 PMCID: PMC4779066 DOI: 10.1109/tmi.2015.2405015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acute brain diseases such as acute strokes and transit ischemic attacks are the leading causes of mortality and morbidity worldwide, responsible for 9% of total death every year. "Time is brain" is a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate computational framework for hemodynamic parameters estimation can save critical time for thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. However, low-radiation leads to increased noise and artifacts which require more sophisticated and time-consuming algorithms for robust estimation. In this paper, we focus on developing a robust and efficient framework to accurately estimate the perfusion parameters at low radiation dosage. Specifically, we present a tensor total-variation (TTV) technique which fuses the spatial correlation of the vascular structure and the temporal continuation of the blood signal flow. An efficient algorithm is proposed to find the solution with fast convergence and reduced computational complexity. Extensive evaluations are carried out in terms of sensitivity to noise levels, estimation accuracy, contrast preservation, and performed on digital perfusion phantom estimation, as well as in vivo clinical subjects. Our framework reduces the necessary radiation dose to only 8% of the original level and outperforms the state-of-art algorithms with peak signal-to-noise ratio improved by 32%. It reduces the oscillation in the residue functions, corrects over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), and maintains the distinction between the deficit and normal regions.
Collapse
|
28
|
Zheng Y, Wei B, Liu H, Xiao R, Gee JC. Measuring sparse temporal-variation for accurate registration of dynamic contrast-enhanced breast MR images. Comput Med Imaging Graph 2015; 46 Pt 1:73-80. [PMID: 26183649 DOI: 10.1016/j.compmedimag.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
Abstract
Accurate registration of dynamic contrast-enhanced (DCE) MR breast images is challenging due to the temporal variations of image intensity and the non-rigidity of breast motion. The former can cause the well-known tumor shrinking/expanding problem in registration process while the latter complicates the task by requiring an estimation of non-rigid deformation. In this paper, we treat the intensity's temporal variations as "corruptions" which spatially distribute in a sparse pattern and model them with a L1 norm and a Lorentzian norm. We show that these new image similarity measurements can characterize the non-Gaussian property of the difference between the pre-contrast and post-contrast images and help to resolve the shrinking/expanding problem by forgiving significant image variations. Furthermore, we propose an iteratively re-weighted least squares based method and a linear programming based technique for optimizing the objective functions obtained using these two novel norms. We show that these optimization techniques outperform the traditional gradient-descent approach. Experimental results with sequential DCE-MR images from 28 patients show the superior performances of our algorithms.
Collapse
Affiliation(s)
- Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, China; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Benzheng Wei
- College of Science and Engineering, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hui Liu
- Department of Electronic Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Rui Xiao
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - James C Gee
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Fang R, Jiang H, Huang J. Tissue-specific sparse deconvolution for brain CT perfusion. Comput Med Imaging Graph 2015; 46 Pt 1:64-72. [PMID: 26055434 DOI: 10.1016/j.compmedimag.2015.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/18/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.
Collapse
Affiliation(s)
- Ruogu Fang
- School of Computing and Information Sciences, Florida International University, Miami, FL 33174, USA.
| | - Haodi Jiang
- School of Computing and Information Sciences, Florida International University, Miami, FL 33174, USA
| | - Junzhou Huang
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
30
|
Xu J, Xiang L, Wang G, Ganesan S, Feldman M, Shih NN, Gilmore H, Madabhushi A. Sparse Non-negative Matrix Factorization (SNMF) based color unmixing for breast histopathological image analysis. Comput Med Imaging Graph 2015; 46 Pt 1:20-29. [PMID: 25958195 DOI: 10.1016/j.compmedimag.2015.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/06/2015] [Accepted: 04/12/2015] [Indexed: 12/14/2022]
Abstract
Color deconvolution has emerged as a popular method for color unmixing as a pre-processing step for image analysis of digital pathology images. One deficiency of this approach is that the stain matrix is pre-defined which requires specific knowledge of the data. This paper presents an unsupervised Sparse Non-negative Matrix Factorization (SNMF) based approach for color unmixing. We evaluate this approach for color unmixing of breast pathology images. Compared to Non-negative Matrix Factorization (NMF), the sparseness constraint imposed on coefficient matrix aims to use more meaningful representation of color components for separating stained colors. In this work SNMF is leveraged for decomposing pure stained color in both Immunohistochemistry (IHC) and Hematoxylin and Eosin (H&E) images. SNMF is compared with Principle Component Analysis (PCA), Independent Component Analysis (ICA), Color Deconvolution (CD), and Non-negative Matrix Factorization (NMF) based approaches. SNMF demonstrated improved performance in decomposing brown diaminobenzidine (DAB) component from 36 IHC images as well as accurately segmenting about 1400 nuclei and 500 lymphocytes from H & E images.
Collapse
Affiliation(s)
- Jun Xu
- Jiangsu Key Laboratory of Big Data Analysis Technique, Nanjing University of Information Science and Technology, Nanjing 210044, China; CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Lei Xiang
- Jiangsu Key Laboratory of Big Data Analysis Technique, Nanjing University of Information Science and Technology, Nanjing 210044, China; CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guanhao Wang
- Jiangsu Key Laboratory of Big Data Analysis Technique, Nanjing University of Information Science and Technology, Nanjing 210044, China; CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | | | - Michael Feldman
- Department of Pathology, Hospital of the University of Pennsylvania, PA 19104, USA
| | - Natalie Nc Shih
- Department of Pathology, Hospital of the University of Pennsylvania, PA 19104, USA
| | - Hannah Gilmore
- Institute for Pathology, University Hospitals Case Medical Center, Case Western Reserve University, OH 44106-7207, USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, OH 44106, USA
| |
Collapse
|
31
|
Perfusion CT and acute stroke imaging: Foundations, applications, and literature review. J Neuroradiol 2015; 42:21-9. [DOI: 10.1016/j.neurad.2014.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022]
|
32
|
Tensor total-variation regularized deconvolution kegularlzea ueconvolution for efficient low-dose CT perfusion. ACTA ACUST UNITED AC 2014; 17:154-61. [PMID: 25333113 DOI: 10.1007/978-3-319-10404-1_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Acute brain diseases such as acute stroke and transit ischemic attacks are the leading causes of mortality and morbidity worldwide, responsible for 9% of total death every year. 'Time is brain' is a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate computational framework for hemodynamic parameters estimation can save critical time for thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. However, low-radiation will lead to increased noise and artifacts which require more sophisticated and time-consuming algorithms for robust estimation. We propose a novel efficient framework using tensor total-variation (TTV) regularization to achieve both high efficiency and accuracy in deconvolution for low-dose CTP. The method reduces the necessary radiation dose to only 8% of the original level and outperforms the state-of-art algorithms with estimation error reduced by 40%. It also corrects over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), at both normal and reduced sampling rate. An efficient computational algorithm is proposed to find the solution with fast convergence.
Collapse
|
33
|
Daducci A, Van De Ville D, Thiran JP, Wiaux Y. Sparse regularization for fiber ODF reconstruction: from the suboptimality of ℓ2 and ℓ1 priors to ℓ0. Med Image Anal 2014; 18:820-33. [PMID: 24593935 DOI: 10.1016/j.media.2014.01.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 11/27/2022]
Abstract
Diffusion MRI is a well established imaging modality providing a powerful way to probe the structure of the white matter non-invasively. Despite its potential, the intrinsic long scan times of these sequences have hampered their use in clinical practice. For this reason, a large variety of methods have been recently proposed to shorten the acquisition times. Among them, spherical deconvolution approaches have gained a lot of interest for their ability to reliably recover the intra-voxel fiber configuration with a relatively small number of data samples. To overcome the intrinsic instabilities of deconvolution, these methods use regularization schemes generally based on the assumption that the fiber orientation distribution (FOD) to be recovered in each voxel is sparse. The well known Constrained Spherical Deconvolution (CSD) approach resorts to Tikhonov regularization, based on an ℓ(2)-norm prior, which promotes a weak version of sparsity. Also, in the last few years compressed sensing has been advocated to further accelerate the acquisitions and ℓ(1)-norm minimization is generally employed as a means to promote sparsity in the recovered FODs. In this paper, we provide evidence that the use of an ℓ(1)-norm prior to regularize this class of problems is somewhat inconsistent with the fact that the fiber compartments all sum up to unity. To overcome this ℓ(1) inconsistency while simultaneously exploiting sparsity more optimally than through an ℓ(2) prior, we reformulate the reconstruction problem as a constrained formulation between a data term and a sparsity prior consisting in an explicit bound on the ℓ(0)norm of the FOD, i.e. on the number of fibers. The method has been tested both on synthetic and real data. Experimental results show that the proposed ℓ(0) formulation significantly reduces modeling errors compared to the state-of-the-art ℓ(2) and ℓ(1) regularization approaches.
Collapse
Affiliation(s)
- Alessandro Daducci
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Switzerland; University Hospital Center (CHUV) and University of Lausanne (UNIL), Switzerland.
| | - Dimitri Van De Ville
- Medical Image Processing Lab, École Polytechnique Fédérale de Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Switzerland; University Hospital Center (CHUV) and University of Lausanne (UNIL), Switzerland
| | - Yves Wiaux
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Switzerland; Medical Image Processing Lab, École Polytechnique Fédérale de Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Switzerland; Institute of Sensors, Signals & Systems, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
34
|
Abstract
Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra usually occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we extend this line of work by introducing tissue-specific sparse deconvolution to preserve the subtle perfusion information in the low-contrast tissue classes by learning tissue-specific dictionaries for each tissue class, and restore the low-dose perfusion maps by joining the tissue segments reconstructed from the corresponding dictionaries. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method with the advantage of better differentiation between abnormal and normal tissue in these patients.
Collapse
|
35
|
Multi-modal registration for correlative microscopy using image analogies. Med Image Anal 2013; 18:914-26. [PMID: 24387943 DOI: 10.1016/j.media.2013.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/22/2013] [Accepted: 12/05/2013] [Indexed: 11/23/2022]
Abstract
Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance.
Collapse
|
36
|
Improving low-dose blood-brain barrier permeability quantification using sparse high-dose induced prior for Patlak model. Med Image Anal 2013; 18:866-80. [PMID: 24200529 DOI: 10.1016/j.media.2013.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/17/2013] [Accepted: 09/23/2013] [Indexed: 11/24/2022]
Abstract
Blood-brain barrier permeability (BBBP) measurements extracted from the perfusion computed tomography (PCT) using the Patlak model can be a valuable indicator to predict hemorrhagic transformation in patients with acute stroke. Unfortunately, the standard Patlak model based PCT requires excessive radiation exposure, which raised attention on radiation safety. Minimizing radiation dose is of high value in clinical practice but can degrade the image quality due to the introduced severe noise. The purpose of this work is to construct high quality BBBP maps from low-dose PCT data by using the brain structural similarity between different individuals and the relations between the high- and low-dose maps. The proposed sparse high-dose induced (shd-Patlak) model performs by building a high-dose induced prior for the Patlak model with a set of location adaptive dictionaries, followed by an optimized estimation of BBBP map with the prior regularized Patlak model. Evaluation with the simulated low-dose clinical brain PCT datasets clearly demonstrate that the shd-Patlak model can achieve more significant gains than the standard Patlak model with improved visual quality, higher fidelity to the gold standard and more accurate details for clinical analysis.
Collapse
|