• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4695755)   Today's Articles (19)
For: Karimaghaloo Z, Arnold DL, Arbel T. Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images. Med Image Anal 2015. [PMID: 26211811 DOI: 10.1016/j.media.2015.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Number Cited by Other Article(s)
1
Schlaeger S, Shit S, Eichinger P, Hamann M, Opfer R, Krüger J, Dieckmeyer M, Schön S, Mühlau M, Zimmer C, Kirschke JS, Wiestler B, Hedderich DM. AI-based detection of contrast-enhancing MRI lesions in patients with multiple sclerosis. Insights Imaging 2023;14:123. [PMID: 37454342 DOI: 10.1186/s13244-023-01460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023]  Open
2
Puyalto P. Editorial for “Psychophysical Evaluation of Visual vs. Computer Aided Detection of Brain Lesions on Magnetic Resonance Images”. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]  Open
3
Ji J, Wan T, Chen D, Wang H, Zheng M, Qin Z. A deep learning method for automatic evaluation of diagnostic information from multi-stained histopathological images. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
4
Gaj S, Ontaneda D, Nakamura K. Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI. PLoS One 2021;16:e0255939. [PMID: 34469432 PMCID: PMC8409666 DOI: 10.1371/journal.pone.0255939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/27/2021] [Indexed: 01/18/2023]  Open
5
Gryska E, Schneiderman J, Björkman-Burtscher I, Heckemann RA. Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open 2021;11:e042660. [PMID: 33514580 PMCID: PMC7849889 DOI: 10.1136/bmjopen-2020-042660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]  Open
6
Yu B, Fan Z. A comprehensive review of conditional random fields: variants, hybrids and applications. Artif Intell Rev 2019. [DOI: 10.1007/s10462-019-09793-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
7
Zormpas-Petridis K, Failmezger H, Raza SEA, Roxanis I, Jamin Y, Yuan Y. Superpixel-Based Conditional Random Fields (SuperCRF): Incorporating Global and Local Context for Enhanced Deep Learning in Melanoma Histopathology. Front Oncol 2019;9:1045. [PMID: 31681583 PMCID: PMC6798642 DOI: 10.3389/fonc.2019.01045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023]  Open
8
Agn M, Munck Af Rosenschöld P, Puonti O, Lundemann MJ, Mancini L, Papadaki A, Thust S, Ashburner J, Law I, Van Leemput K. A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning. Med Image Anal 2019;54:220-237. [PMID: 30952038 PMCID: PMC6554451 DOI: 10.1016/j.media.2019.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA