1
|
Schlaeger S, Shit S, Eichinger P, Hamann M, Opfer R, Krüger J, Dieckmeyer M, Schön S, Mühlau M, Zimmer C, Kirschke JS, Wiestler B, Hedderich DM. AI-based detection of contrast-enhancing MRI lesions in patients with multiple sclerosis. Insights Imaging 2023; 14:123. [PMID: 37454342 DOI: 10.1186/s13244-023-01460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Contrast-enhancing (CE) lesions are an important finding on brain magnetic resonance imaging (MRI) in patients with multiple sclerosis (MS) but can be missed easily. Automated solutions for reliable CE lesion detection are emerging; however, independent validation of artificial intelligence (AI) tools in the clinical routine is still rare. METHODS A three-dimensional convolutional neural network for CE lesion segmentation was trained externally on 1488 datasets of 934 MS patients from 81 scanners using concatenated information from FLAIR and T1-weighted post-contrast imaging. This externally trained model was tested on an independent dataset comprising 504 T1-weighted post-contrast and FLAIR image datasets of MS patients from clinical routine. Two neuroradiologists (R1, R2) labeled CE lesions for gold standard definition in the clinical test dataset. The algorithmic output was evaluated on both patient- and lesion-level. RESULTS On a patient-level, recall, specificity, precision, and accuracy of the AI tool to predict patients with CE lesions were 0.75, 0.99, 0.91, and 0.96. The agreement between the AI tool and both readers was within the range of inter-rater agreement (Cohen's kappa; AI vs. R1: 0.69; AI vs. R2: 0.76; R1 vs. R2: 0.76). On a lesion-level, false negative lesions were predominately found in infratentorial location, significantly smaller, and at lower contrast than true positive lesions (p < 0.05). CONCLUSIONS AI-based identification of CE lesions on brain MRI is feasible, approaching human reader performance in independent clinical data and might be of help as a second reader in the neuroradiological assessment of active inflammation in MS patients. CRITICAL RELEVANCE STATEMENT Al-based detection of contrast-enhancing multiple sclerosis lesions approaches human reader performance, but careful visual inspection is still needed, especially for infratentorial, small and low-contrast lesions.
Collapse
Affiliation(s)
- Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Suprosanna Shit
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Paul Eichinger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | | | | | | | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Simon Schön
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- DIE RADIOLOGIE, Munich, Germany
| | - Mark Mühlau
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
2
|
Puyalto P. Editorial for “Psychophysical Evaluation of Visual vs. Computer Aided Detection of Brain Lesions on Magnetic Resonance Images”. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Paloma Puyalto
- Radiology Department Hospital Universitari Germans Trias i Pujol Barcelona Spain
- Facultat de Ciències de la Salut, Medicine Department Universitat Internacional de Catalunya Barcelona Spain
| |
Collapse
|
3
|
Ji J, Wan T, Chen D, Wang H, Zheng M, Qin Z. A deep learning method for automatic evaluation of diagnostic information from multi-stained histopathological images. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Gaj S, Ontaneda D, Nakamura K. Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI. PLoS One 2021; 16:e0255939. [PMID: 34469432 PMCID: PMC8409666 DOI: 10.1371/journal.pone.0255939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
Gadolinium-enhancing lesions reflect active disease and are critical for in-patient monitoring in multiple sclerosis (MS). In this work, we have developed the first fully automated method to segment and count the gadolinium-enhancing lesions from routine clinical MRI of MS patients. The proposed method first segments the potential lesions using 2D-UNet from multi-channel scans (T1 post-contrast, T1 pre-contrast, FLAIR, T2, and proton-density) and classifies the lesions using a random forest classifier. The algorithm was trained and validated on 600 MRIs with manual segmentation. We compared the effect of loss functions (Dice, cross entropy, and bootstrapping cross entropy) and number of input contrasts. We compared the lesion counts with those by radiologists using 2,846 images. Dice, lesion-wise sensitivity, and false discovery rate with full 5 contrasts were 0.698, 0.844, and 0.307, which improved to 0.767, 0.969, and 0.00 in large lesions (>100 voxels). The model using bootstrapping loss function provided a statistically significant increase of 7.1% in sensitivity and of 2.3% in Dice compared with the model using cross entropy loss. T1 post/pre-contrast and FLAIR were the most important contrasts. For large lesions, the 2D-UNet model trained using T1 pre-contrast, FLAIR, T2, PD had a lesion-wise sensitivity of 0.688 and false discovery rate 0.083, even without T1 post-contrast. For counting lesions in 2846 routine MRI images, the model with 2D-UNet and random forest, which was trained with bootstrapping cross entropy, achieved accuracy of 87.7% using T1 pre-contrast, T1 post-contrast, and FLAIR when lesion counts were categorized as 0, 1, and 2 or more. The model performs well in routine non-standardized MRI datasets, allows large-scale analysis of clinical datasets, and may have clinical applications.
Collapse
Affiliation(s)
- Sibaji Gaj
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Kunio Nakamura
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
5
|
Gryska E, Schneiderman J, Björkman-Burtscher I, Heckemann RA. Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open 2021; 11:e042660. [PMID: 33514580 PMCID: PMC7849889 DOI: 10.1136/bmjopen-2020-042660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Medical image analysis practices face challenges that can potentially be addressed with algorithm-based segmentation tools. In this study, we map the field of automatic MR brain lesion segmentation to understand the clinical applicability of prevalent methods and study designs, as well as challenges and limitations in the field. DESIGN Scoping review. SETTING Three databases (PubMed, IEEE Xplore and Scopus) were searched with tailored queries. Studies were included based on predefined criteria. Emerging themes during consecutive title, abstract, methods and whole-text screening were identified. The full-text analysis focused on materials, preprocessing, performance evaluation and comparison. RESULTS Out of 2990 unique articles identified through the search, 441 articles met the eligibility criteria, with an estimated growth rate of 10% per year. We present a general overview and trends in the field with regard to publication sources, segmentation principles used and types of lesions. Algorithms are predominantly evaluated by measuring the agreement of segmentation results with a trusted reference. Few articles describe measures of clinical validity. CONCLUSIONS The observed reporting practices leave room for improvement with a view to studying replication, method comparison and clinical applicability. To promote this improvement, we propose a list of recommendations for future studies in the field.
Collapse
Affiliation(s)
- Emilia Gryska
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| | - Justin Schneiderman
- Sektionen för klinisk neurovetenskap, Goteborgs Universitet Institutionen for Neurovetenskap och fysiologi, Goteborg, Sweden
| | | | - Rolf A Heckemann
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| |
Collapse
|
6
|
Yu B, Fan Z. A comprehensive review of conditional random fields: variants, hybrids and applications. Artif Intell Rev 2019. [DOI: 10.1007/s10462-019-09793-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Zormpas-Petridis K, Failmezger H, Raza SEA, Roxanis I, Jamin Y, Yuan Y. Superpixel-Based Conditional Random Fields (SuperCRF): Incorporating Global and Local Context for Enhanced Deep Learning in Melanoma Histopathology. Front Oncol 2019; 9:1045. [PMID: 31681583 PMCID: PMC6798642 DOI: 10.3389/fonc.2019.01045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
Computational pathology-based cell classification algorithms are revolutionizing the study of the tumor microenvironment and can provide novel predictive/prognosis biomarkers crucial for the delivery of precision oncology. Current algorithms used on hematoxylin and eosin slides are based on individual cell nuclei morphology with limited local context features. Here, we propose a novel multi-resolution hierarchical framework (SuperCRF) inspired by the way pathologists perceive regional tissue architecture to improve cell classification and demonstrate its clinical applications. We develop SuperCRF by training a state-of-art deep learning spatially constrained- convolution neural network (SC-CNN) to detect and classify cells from 105 high-resolution (20×) H&E-stained slides of The Cancer Genome Atlas melanoma dataset and subsequently, a conditional random field (CRF) by combining cellular neighborhood with tumor regional classification from lower resolution images (5, 1.25×) given by a superpixel-based machine learning framework. SuperCRF led to an 11.85% overall improvement in the accuracy of the state-of-art deep learning SC-CNN cell classifier. Consistent with a stroma-mediated immune suppressive microenvironment, SuperCRF demonstrated that (i) a high ratio of lymphocytes to all lymphocytes within the stromal compartment (p = 0.026) and (ii) a high ratio of stromal cells to all cells (p < 0.0001 compared to p = 0.039 for SC-CNN only) are associated with poor survival in patients with melanoma. SuperCRF improves cell classification by introducing global and local context-based information and can be implemented in combination with any single-cell classifier. SuperCRF provides valuable tools to study the tumor microenvironment and identify predictors of survival and response to therapy.
Collapse
Affiliation(s)
- Konstantinos Zormpas-Petridis
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Trust, Surrey, United Kingdom
| | - Henrik Failmezger
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Shan E Ahmed Raza
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Ioannis Roxanis
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Trust, Surrey, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
8
|
Agn M, Munck Af Rosenschöld P, Puonti O, Lundemann MJ, Mancini L, Papadaki A, Thust S, Ashburner J, Law I, Van Leemput K. A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning. Med Image Anal 2019; 54:220-237. [PMID: 30952038 PMCID: PMC6554451 DOI: 10.1016/j.media.2019.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022]
Abstract
In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy.
Collapse
Affiliation(s)
- Mikael Agn
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark.
| | - Per Munck Af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Denmark
| | - Michael J Lundemann
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Laura Mancini
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, UK; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, UK
| | - Anastasia Papadaki
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, UK; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, UK
| | - Steffi Thust
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, UK; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, UK
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, UK
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Koen Van Leemput
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA
| |
Collapse
|