1
|
Kang N, Wang M, Pang C, Lan R, Li B, Guan J, Wang H. Cross-patch feature interactive net with edge refinement for retinal vessel segmentation. Comput Biol Med 2024; 174:108443. [PMID: 38608328 DOI: 10.1016/j.compbiomed.2024.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Retinal vessel segmentation based on deep learning is an important auxiliary method for assisting clinical doctors in diagnosing retinal diseases. However, existing methods often produce mis-segmentation when dealing with low contrast images and thin blood vessels, which affects the continuity and integrity of the vessel skeleton. In addition, existing deep learning methods tend to lose a lot of detailed information during training, which affects the accuracy of segmentation. To address these issues, we propose a novel dual-decoder based Cross-patch Feature Interactive Net with Edge Refinement (CFI-Net) for end-to-end retinal vessel segmentation. In the encoder part, a joint refinement down-sampling method (JRDM) is proposed to compress feature information in the process of reducing image size, so as to reduce the loss of thin vessels and vessel edge information during the encoding process. In the decoder part, we adopt a dual-path model based on edge detection, and propose a Cross-patch Interactive Attention Mechanism (CIAM) in the main path to enhancing multi-scale spatial channel features and transferring cross-spatial information. Consequently, it improve the network's ability to segment complete and continuous vessel skeletons, reducing vessel segmentation fractures. Finally, the Adaptive Spatial Context Guide Method (ASCGM) is proposed to fuse the prediction results of the two decoder paths, which enhances segmentation details while removing part of the background noise. We evaluated our model on two retinal image datasets and one coronary angiography dataset, achieving outstanding performance in segmentation comprehensive assessment metrics such as AUC and CAL. The experimental results showed that the proposed CFI-Net has superior segmentation performance compared with other existing methods, especially for thin vessels and vessel edges. The code is available at https://github.com/kita0420/CFI-Net.
Collapse
Affiliation(s)
- Ning Kang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Maofa Wang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Cheng Pang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin, 541004, China
| | - Rushi Lan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin, 541004, China
| | - Bingbing Li
- Department of Pathology, Ganzhou Municipal Hospital, Ganzhou, 341000, China
| | - Junlin Guan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Huadeng Wang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin, 541004, China
| |
Collapse
|
2
|
Zhou W, Bai W, Ji J, Yi Y, Zhang N, Cui W. Dual-path multi-scale context dense aggregation network for retinal vessel segmentation. Comput Biol Med 2023; 164:107269. [PMID: 37562323 DOI: 10.1016/j.compbiomed.2023.107269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
There has been steady progress in the field of deep learning-based blood vessel segmentation. However, several challenging issues still continue to limit its progress, including inadequate sample sizes, the neglect of contextual information, and the loss of microvascular details. To address these limitations, we propose a dual-path deep learning framework for blood vessel segmentation. In our framework, the fundus images are divided into concentric patches with different scales to alleviate the overfitting problem. Then, a Multi-scale Context Dense Aggregation Network (MCDAU-Net) is proposed to accurately extract the blood vessel boundaries from these patches. In MCDAU-Net, a Cascaded Dilated Spatial Pyramid Pooling (CDSPP) module is designed and incorporated into intermediate layers of the model, enhancing the receptive field and producing feature maps enriched with contextual information. To improve segmentation performance for low-contrast vessels, we propose an InceptionConv (IConv) module, which can explore deeper semantic features and suppress the propagation of non-vessel information. Furthermore, we design a Multi-scale Adaptive Feature Aggregation (MAFA) module to fuse the multi-scale feature by assigning adaptive weight coefficients to different feature maps through skip connections. Finally, to explore the complementary contextual information and enhance the continuity of microvascular structures, a fusion module is designed to combine the segmentation results obtained from patches of different sizes, achieving fine microvascular segmentation performance. In order to assess the effectiveness of our approach, we conducted evaluations on three widely-used public datasets: DRIVE, CHASE-DB1, and STARE. Our findings reveal a remarkable advancement over the current state-of-the-art (SOTA) techniques, with the mean values of Se and F1 scores being an increase of 7.9% and 4.7%, respectively. The code is available at https://github.com/bai101315/MCDAU-Net.
Collapse
Affiliation(s)
- Wei Zhou
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Weiqi Bai
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Jianhang Ji
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Yugen Yi
- School of Software, Jiangxi Normal University, Nanchang, China.
| | - Ningyi Zhang
- School of Software, Jiangxi Normal University, Nanchang, China
| | - Wei Cui
- Institute for Infocomm Research, The Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
3
|
Sharma S. Artificial intelligence for fracture diagnosis in orthopedic X-rays: current developments and future potential. SICOT J 2023; 9:21. [PMID: 37409882 PMCID: PMC10324466 DOI: 10.1051/sicotj/2023018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023] Open
Abstract
The use of artificial intelligence (AI) in the interpretation of orthopedic X-rays has shown great potential to improve the accuracy and efficiency of fracture diagnosis. AI algorithms rely on large datasets of annotated images to learn how to accurately classify and diagnose abnormalities. One way to improve AI interpretation of X-rays is to increase the size and quality of the datasets used for training, and to incorporate more advanced machine learning techniques, such as deep reinforcement learning, into the algorithms. Another approach is to integrate AI algorithms with other imaging modalities, such as computed tomography (CT) scans, and magnetic resonance imaging (MRI), to provide a more comprehensive and accurate diagnosis. Recent studies have shown that AI algorithms can accurately detect and classify fractures of the wrist and long bones on X-ray images, demonstrating the potential of AI to improve the accuracy and efficiency of fracture diagnosis. These findings suggest that AI has the potential to significantly improve patient outcomes in the field of orthopedics.
Collapse
Affiliation(s)
- Sanskrati Sharma
- Department of Orthopedics, Royal Preston Hospital Sharoe Green Ln, Fulwood Preston PR2 9HT United Kingdom
| |
Collapse
|
4
|
Liu W, Yang H, Tian T, Cao Z, Pan X, Xu W, Jin Y, Gao F. Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation. IEEE J Biomed Health Inform 2022; 26:4623-4634. [PMID: 35788455 DOI: 10.1109/jbhi.2022.3188710] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vessel segmentation is critical for disease diagnosis and surgical planning. Recently, the vessel segmentation method based on deep learning has achieved outstanding performance. However, vessel segmentation remains challenging due to thin vessels with low contrast that easily lose spatial information in the traditional U-shaped segmentation network. To alleviate this problem, we propose a novel and straightforward full-resolution network (FR-UNet) that expands horizontally and vertically through a multiresolution convolution interactive mechanism while retaining full image resolution. In FR-UNet, the feature aggregation module integrates multiscale feature maps from adjacent stages to supplement high-level contextual information. The modified residual blocks continuously learn multiresolution representations to obtain a pixel-level accuracy prediction map. Moreover, we propose the dual-threshold iterative algorithm (DTI) to extract weak vessel pixels for improving vessel connectivity. The proposed method was evaluated on retinal vessel datasets (DRIVE, CHASE_DB1, and STARE) and coronary angiography datasets (DCA1 and CHUAC). The results demonstrate that FR-UNet outperforms state-of-the-art methods by achieving the highest Sen, AUC, F1, and IOU on most of the above-mentioned datasets with fewer parameters, and that DTI enhances vessel connectivity while greatly improving sensitivity. The code is available at: https://github.com/lseventeen/FR-UNet.
Collapse
|
5
|
Segmentation Algorithm-Based Safety Analysis of Cardiac Computed Tomography Angiography to Evaluate Doctor-Nurse-Patient Integrated Nursing Management for Cardiac Interventional Surgery. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2148566. [PMID: 35572833 PMCID: PMC9095376 DOI: 10.1155/2022/2148566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
To deeply analyze the influences of doctor-nurse-patient integrated nursing management on cardiac interventional surgery, 120 patients with coronary heart disease undergoing cardiac interventional therapy were selected as the subjects and randomly divided into two groups, 60 cases in each group. The experimental group used the doctor-nurse-patient integrated nursing, while the control group adopted the routine nursing. The Hessian matrix enhanced filter segmentation algorithm was used to process the cardiac computed tomography angiography (CTA) images of patients to assess the algorithm performance and the safety of nursing methods. The results showed that the Jaccard, Dice, sensitivity, and specificity of cardiac CTA images of patients with coronary heart disease processed by Hessian matrix enhanced filter segmentation algorithm were 0.86, 0.93, 0.94, and 0.95, respectively; the disease self-management ability score and quality of life score of patients in the experimental group after nursing intervention were significantly better than those before nursing intervention, with significant differences (
). The number of cases with adverse vascular events in the experimental group was 3 cases, which was obviously lower than that in the control group (15 cases). The diagnostic accuracy of the two groups of patients after segmentation algorithm processing was 0.87 and 0.88, respectively, which was apparently superior than the diagnostic accuracy of conventional CTA (0.58 and 0.61). In summary, cardiac CTA evaluation of doctor-nurse-patient integrated nursing management cardiac interventional surgery based on segmentation algorithm had good safety and was worthy of further promotion in clinical cardiac interventional surgery.
Collapse
|
6
|
Sun M, Wang Y, Fu Z, Li L, Liu Y, Zhao X. A Machine Learning Method for Automated In Vivo Transparent Vessel Segmentation and Identification Based on Blood Flow Characteristics. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-14. [PMID: 35387704 DOI: 10.1017/s1431927622000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In vivo transparent vessel segmentation is important to life science research. However, this task remains very challenging because of the fuzzy edges and the barely noticeable tubular characteristics of vessels under a light microscope. In this paper, we present a new machine learning method based on blood flow characteristics to segment the global vascular structure in vivo. Specifically, the videos of blood flow in transparent vessels are used as input. We use the machine learning classifier to classify the vessel pixels through the motion features extracted from moving red blood cells and achieve vessel segmentation based on a region-growing algorithm. Moreover, we utilize the moving characteristics of blood flow to distinguish between the types of vessels, including arteries, veins, and capillaries. In the experiments, we evaluate the performance of our method on videos of zebrafish embryos. The experimental results indicate the high accuracy of vessel segmentation, with an average accuracy of 97.98%, which is much more superior than other segmentation or motion-detection algorithms. Our method has good robustness when applied to input videos with various time resolutions, with a minimum of 3.125 fps.
Collapse
Affiliation(s)
- Mingzhu Sun
- Institute of Robotics and Automatic Information System (IRAIS) and the Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin300350, China
| | - Yiwen Wang
- Institute of Robotics and Automatic Information System (IRAIS) and the Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin300350, China
| | - Zhenhua Fu
- Institute of Robotics and Automatic Information System (IRAIS) and the Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin300350, China
| | - Lu Li
- Institute of Robotics and Automatic Information System (IRAIS) and the Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin300350, China
| | - Yaowei Liu
- Institute of Robotics and Automatic Information System (IRAIS) and the Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin300350, China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System (IRAIS) and the Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Nankai University, Tianjin300350, China
| |
Collapse
|
7
|
Automated Extraction of Ground Fissures Due to Coal Mining Subsidence Based on UAV Photogrammetry. REMOTE SENSING 2022. [DOI: 10.3390/rs14051071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Widespread ground fissures caused by coal mining subsidence are a main cause of ecological destruction in coal mining areas, and the rapid monitoring of ground fissures is essential for ecological restoration. Traditional fissure monitoring technologies are time consuming and laborious. Therefore, we developed a method to automatically extract ground fissures from high-resolution UAV images. First, a multiscale Hessian-based enhancement filter was utilized to enhance the ground fissures in grayscale images. Then, a simple single-thresholding operation was applied to segment the enhanced image to generate a binary ground fissure map. Finally, incomplete path opening was performed to eliminate the noises in the fissure extraction results. We selected the N1212 working face of the Ningtiaota Coal Mine in Shenmu County, China, as the study area. The results indicated that the ranges of correctness, completeness, and the kappa coefficient of the extracted results were 66.23–79.00%, 69.03–73.22%, and 67.91–75.88%, respectively. Image resolution is the key factor for successful fissure detection; the method proposed in this paper can extract ground fissures with a width greater than one pixel (2.64 cm), and the detection ratio for fissures with a width greater than two pixels was over 87%. Our research has solved the problem of the rapid monitoring of ground fissures to a certain extent and can act as a valuable tool for ecological restoration in mining areas.
Collapse
|
8
|
Song J, Zhang Z. Magnetic Resonance Imaging Segmentation via Weighted Level Set Model Based on Local Kernel Metric and Spatial Constraint. ENTROPY 2021; 23:e23091196. [PMID: 34573821 PMCID: PMC8465562 DOI: 10.3390/e23091196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022]
Abstract
Magnetic resonance imaging (MRI) segmentation is a fundamental and significant task since it can guide subsequent clinic diagnosis and treatment. However, images are often corrupted by defects such as low-contrast, noise, intensity inhomogeneity, and so on. Therefore, a weighted level set model (WLSM) is proposed in this study to segment inhomogeneous intensity MRI destroyed by noise and weak boundaries. First, in order to segment the intertwined regions of brain tissue accurately, a weighted neighborhood information measure scheme based on local multi information and kernel function is designed. Then, the membership function of fuzzy c-means clustering is used as the spatial constraint of level set model to overcome the sensitivity of level set to initialization, and the evolution of level set function can be adaptively changed according to different tissue information. Finally, the distance regularization term in level set function is replaced by a double potential function to ensure the stability of the energy function in the evolution process. Both real and synthetic MRI images can show the effectiveness and performance of WLSM. In addition, compared with several state-of-the-art models, segmentation accuracy and Jaccard similarity coefficient obtained by WLSM are increased by 0.0586, 0.0362 and 0.1087, 0.0703, respectively.
Collapse
Affiliation(s)
- Jianhua Song
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
- Correspondence:
| | - Zhe Zhang
- Electronic Engineering College, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
9
|
Meta grayscale adaptive network for 3D integrated renal structures segmentation. Med Image Anal 2021; 71:102055. [PMID: 33866259 DOI: 10.1016/j.media.2021.102055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/03/2021] [Accepted: 03/26/2021] [Indexed: 11/22/2022]
Abstract
Three-dimensional (3D) integrated renal structures (IRS) segmentation targets segmenting the kidneys, renal tumors, arteries, and veins in one inference. Clinicians will benefit from the 3D IRS visual model for accurate preoperative planning and intraoperative guidance of laparoscopic partial nephrectomy (LPN). However, no success has been reported in 3D IRS segmentation due to the inherent challenges in grayscale distribution: low contrast caused by the narrow task-dependent distribution range of regions of interest (ROIs), and the networks representation preferences caused by the distribution variation inter-images. In this paper, we propose the Meta Greyscale Adaptive Network (MGANet), the first deep learning framework to simultaneously segment the kidney, renal tumors, arteries and veins on CTA images in one inference. It makes innovations in two collaborate aspects: 1) The Grayscale Interest Search (GIS) adaptively focuses segmentation networks on task-dependent grayscale distributions via scaling the window width and center with two cross-correlated coefficients for the first time, thus learning the fine-grained representation for fine segmentation. 2) The Meta Grayscale Adaptive (MGA) learning makes an image-level meta-learning strategy. It represents diverse robust features from multiple distributions, perceives the distribution characteristic, and generates the model parameters to fuse features dynamically according to image's distribution, thus adapting the grayscale distribution variation. This study enrolls 123 patients and the average Dice coefficients of the renal structures are up to 87.9%. Fine selection of the task-dependent grayscale distribution ranges and personalized fusion of multiple representations on different distributions will lead to better 3D IRS segmentation quality. Extensive experiments with promising results on renal structures reveal powerful segmentation accuracy and great clinical significance in renal cancer treatment.
Collapse
|
10
|
Wu H, Wang W, Zhong J, Lei B, Wen Z, Qin J. SCS-Net: A Scale and Context Sensitive Network for Retinal Vessel Segmentation. Med Image Anal 2021; 70:102025. [PMID: 33721692 DOI: 10.1016/j.media.2021.102025] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/01/2023]
Abstract
Accurately segmenting retinal vessel from retinal images is essential for the detection and diagnosis of many eye diseases. However, it remains a challenging task due to (1) the large variations of scale in the retinal vessels and (2) the complicated anatomical context of retinal vessels, including complex vasculature and morphology, the low contrast between some vessels and the background, and the existence of exudates and hemorrhage. It is difficult for a model to capture representative and distinguishing features for retinal vessels under such large scale and semantics variations. Limited training data also make this task even harder. In order to comprehensively tackle these challenges, we propose a novel scale and context sensitive network (a.k.a., SCS-Net) for retinal vessel segmentation. We first propose a scale-aware feature aggregation (SFA) module, aiming at dynamically adjusting the receptive fields to effectively extract multi-scale features. Then, an adaptive feature fusion (AFF) module is designed to guide efficient fusion between adjacent hierarchical features to capture more semantic information. Finally, a multi-level semantic supervision (MSS) module is employed to learn more distinctive semantic representation for refining the vessel maps. We conduct extensive experiments on the six mainstream retinal image databases (DRIVE, CHASEDB1, STARE, IOSTAR, HRF, and LES-AV). The experimental results demonstrate the effectiveness of the proposed SCS-Net, which is capable of achieving better segmentation performance than other state-of-the-art approaches, especially for the challenging cases with large scale variations and complex context environments.
Collapse
Affiliation(s)
- Huisi Wu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China, 518060
| | - Wei Wang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China, 518060
| | - Jiafu Zhong
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China, 518060
| | - Baiying Lei
- School of Biomedical Engineering, Health Science Centers, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, AI Research Center for Medical Image Analysis and Diagnosis, Shenzhen, China, 518060.
| | - Zhenkun Wen
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China, 518060
| | - Jing Qin
- Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
11
|
A Fully Automatic Procedure for Brain Tumor Segmentation from Multi-Spectral MRI Records Using Ensemble Learning and Atlas-Based Data Enhancement. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The accurate and reliable segmentation of gliomas from magnetic resonance image (MRI) data has an important role in diagnosis, intervention planning, and monitoring the tumor’s evolution during and after therapy. Segmentation has serious anatomical obstacles like the great variety of the tumor’s location, size, shape, and appearance and the modified position of normal tissues. Other phenomena like intensity inhomogeneity and the lack of standard intensity scale in MRI data represent further difficulties. This paper proposes a fully automatic brain tumor segmentation procedure that attempts to handle all the above problems. Having its foundations on the MRI data provided by the MICCAI Brain Tumor Segmentation (BraTS) Challenges, the procedure consists of three main phases. The first pre-processing phase prepares the MRI data to be suitable for supervised classification, by attempting to fix missing data, suppressing the intensity inhomogeneity, normalizing the histogram of observed data channels, generating additional morphological, gradient-based, and Gabor-wavelet features, and optionally applying atlas-based data enhancement. The second phase accomplishes the main classification process using ensembles of binary decision trees and provides an initial, intermediary labeling for each pixel of test records. The last phase reevaluates these intermediary labels using a random forest classifier, then deploys a spatial region growing-based structural validation of suspected tumors, thus achieving a high-quality final segmentation result. The accuracy of the procedure is evaluated using the multi-spectral MRI records of the BraTS 2015 and BraTS 2019 training data sets. The procedure achieves high-quality segmentation results, characterized by average Dice similarity scores of up to 86%.
Collapse
|
12
|
Suzuki Y, Hori M, Kido S, Otake Y, Ono M, Tomiyama N, Sato Y. Comparative Study of Vessel Detection Methods for Contrast Enhanced Computed Tomography: Effects of Convolutional Neural Network Architecture and Patch Size. ADVANCED BIOMEDICAL ENGINEERING 2021. [DOI: 10.14326/abe.10.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yuki Suzuki
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine
| | | | - Shoji Kido
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine
| | - Yoshito Otake
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| | - Mariko Ono
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
| | - Yoshinobu Sato
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| |
Collapse
|
13
|
Glass-cutting medical images via a mechanical image segmentation method based on crack propagation. Nat Commun 2020; 11:5669. [PMID: 33168802 PMCID: PMC7652839 DOI: 10.1038/s41467-020-19392-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Medical image segmentation is crucial in diagnosing and treating diseases, but automatic segmentation of complex images is very challenging. Here we present a method, called the crack propagation method (CPM), based on the principles of fracture mechanics. This unique method converts the image segmentation problem into a mechanical one, extracting the boundary information of the target area by tracing the crack propagation on a thin plate with grooves corresponding to the area edge. The greatest advantage of CPM is in segmenting images involving blurred or even discontinuous boundaries, a task difficult to achieve by existing auto-segmentation methods. The segmentation results for synthesized images and real medical images show that CPM has high accuracy in segmenting complex boundaries. With increasing demand for medical imaging in clinical practice and research, this method will show its unique potential. Automatic segmentation of complex medical images is challenging. Here, the authors present a crack propagation method based on the principles of fracture mechanics: extracting the boundary information of the target area by tracing the crack propagation on a thin plate with grooves corresponding to the area edge.
Collapse
|