1
|
Iglesias G, Talavera E, Troya J, Díaz-Álvarez A, García-Remesal M. Artificial intelligence model for tumoral clinical decision support systems. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 253:108228. [PMID: 38810378 DOI: 10.1016/j.cmpb.2024.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND AND OBJECTIVE Comparative diagnostic in brain tumor evaluation makes possible to use the available information of a medical center to compare similar cases when a new patient is evaluated. By leveraging Artificial Intelligence models, the proposed system is able of retrieving the most similar cases of brain tumors for a given query. The primary objective is to enhance the diagnostic process by generating more accurate representations of medical images, with a particular focus on patient-specific normal features and pathologies. A key distinction from previous models lies in its ability to produce enriched image descriptors solely from binary information, eliminating the need for costly and difficult to obtain tumor segmentation. METHODS The proposed model uses Artificial Intelligence to detect patient features to recommend the most similar cases from a database. The system not only suggests similar cases but also balances the representation of healthy and abnormal features in its design. This not only encourages the generalization of its use but also aids clinicians in their decision-making processes. This generalization makes possible for future research in different medical diagnosis areas with almost not any change in the system. RESULTS We conducted a comparative analysis of our approach in relation to similar studies. The proposed architecture obtains a Dice coefficient of 0.474 in both tumoral and healthy regions of the patients, which outperforms previous literature. Our proposed model excels at extracting and combining anatomical and pathological features from brain Magnetic Resonances (MRs), achieving state-of-the-art results while relying on less expensive label information. This substantially reduces the overall cost of the training process. Our findings highlight the significant potential for improving the efficiency and accuracy of comparative diagnostics and the treatment of tumoral pathologies. CONCLUSIONS This paper provides substantial grounds for further exploration of the broader applicability and optimization of the proposed architecture to enhance clinical decision-making. The novel approach presented in this work marks a significant advancement in the field of medical diagnosis, particularly in the context of Artificial Intelligence-assisted image retrieval, and promises to reduce costs and improve the quality of patient care using Artificial Intelligence as a support tool instead of a black box system.
Collapse
Affiliation(s)
- Guillermo Iglesias
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid, Spain.
| | - Edgar Talavera
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid, Spain.
| | - Jesús Troya
- Infanta Leonor University Hospital. Madrid., Spain
| | - Alberto Díaz-Álvarez
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid, Spain.
| | - Miguel García-Remesal
- Biomedical Informatics Group, Departamento de Inteligencia Artificial, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Spain.
| |
Collapse
|
2
|
Wang L, Wang Q, Wang X, Ma Y, Zhang L, Liu M. Triplet-constrained deep hashing for chest X-ray image retrieval in COVID-19 assessment. Neural Netw 2024; 173:106182. [PMID: 38387203 DOI: 10.1016/j.neunet.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Radiology images of the chest, such as computer tomography scans and X-rays, have been prominently used in computer-aided COVID-19 analysis. Learning-based radiology image retrieval has attracted increasing attention recently, which generally involves image feature extraction and finding matches in extensive image databases based on query images. Many deep hashing methods have been developed for chest radiology image search due to the high efficiency of retrieval using hash codes. However, they often overlook the complex triple associations between images; that is, images belonging to the same category tend to share similar characteristics and vice versa. To this end, we develop a triplet-constrained deep hashing (TCDH) framework for chest radiology image retrieval to facilitate automated analysis of COVID-19. The TCDH consists of two phases, including (a) feature extraction and (b) image retrieval. For feature extraction, we have introduced a triplet constraint and an image reconstruction task to enhance discriminative ability of learned features, and these features are then converted into binary hash codes to capture semantic information. Specifically, the triplet constraint is designed to pull closer samples within the same category and push apart samples from different categories. Additionally, an auxiliary image reconstruction task is employed during feature extraction to help effectively capture anatomical structures of images. For image retrieval, we utilize learned hash codes to conduct searches for medical images. Extensive experiments on 30,386 chest X-ray images demonstrate the superiority of the proposed method over several state-of-the-art approaches in automated image search. The code is now available online.
Collapse
Affiliation(s)
- Linmin Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qianqian Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaochuan Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Yunling Ma
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Yang Y, Wang H, Wang J, Dong K, Ding S. Semantic-Preserving Surgical Video Retrieval With Phase and Behavior Coordinated Hashing. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:807-819. [PMID: 37788194 DOI: 10.1109/tmi.2023.3321382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Medical professionals rely on surgical video retrieval to discover relevant content within large numbers of videos for surgical education and knowledge transfer. However, the existing retrieval techniques often fail to obtain user-expected results since they ignore valuable semantics in surgical videos. The incorporation of rich semantics into video retrieval is challenging in terms of the hierarchical relationship modeling and coordination between coarse- and fine-grained semantics. To address these issues, this paper proposes a novel semantic-preserving surgical video retrieval (SPSVR) framework, which incorporates surgical phase and behavior semantics using a dual-level hashing module to capture their hierarchical relationship. This module preserves the semantics in binary hash codes by transforming the phase and behavior similarities into high- and low-level similarities in a shared Hamming space. The binary codes are optimized by performing a reconstruction task, a high-level similarity preservation task, and a low-level similarity preservation task, using a coordinated optimization strategy for efficient learning. A self-supervised learning scheme is adopted to capture behavior semantics from video clips so that the indexing of behaviors is unencumbered by fine-grained annotation and recognition. Experiments on four surgical video datasets for two different disciplines demonstrate the robust performance of the proposed framework. In addition, the results of the clinical validation experiments indicate the ability of the proposed method to retrieve the results expected by surgeons. The code can be found at https://github.com/trigger26/SPSVR.
Collapse
|
4
|
Kobayashi K, Gu L, Hataya R, Mizuno T, Miyake M, Watanabe H, Takahashi M, Takamizawa Y, Yoshida Y, Nakamura S, Kouno N, Bolatkan A, Kurose Y, Harada T, Hamamoto R. Sketch-based semantic retrieval of medical images. Med Image Anal 2024; 92:103060. [PMID: 38104401 DOI: 10.1016/j.media.2023.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/31/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The volume of medical images stored in hospitals is rapidly increasing; however, the utilization of these accumulated medical images remains limited. Existing content-based medical image retrieval (CBMIR) systems typically require example images, leading to practical limitations, such as the lack of customizable, fine-grained image retrieval, the inability to search without example images, and difficulty in retrieving rare cases. In this paper, we introduce a sketch-based medical image retrieval (SBMIR) system that enables users to find images of interest without the need for example images. The key concept is feature decomposition of medical images, which allows the entire feature of a medical image to be decomposed into and reconstructed from normal and abnormal features. Building on this concept, our SBMIR system provides an easy-to-use two-step graphical user interface: users first select a template image to specify a normal feature and then draw a semantic sketch of the disease on the template image to represent an abnormal feature. The system integrates both types of input to construct a query vector and retrieves reference images. For evaluation, ten healthcare professionals participated in a user test using two datasets. Consequently, our SBMIR system enabled users to overcome previous challenges, including image retrieval based on fine-grained image characteristics, image retrieval without example images, and image retrieval for rare cases. Our SBMIR system provides on-demand, customizable medical image retrieval, thereby expanding the utility of medical image databases.
Collapse
Affiliation(s)
- Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - Lin Gu
- Machine Intelligence for Medical Engineering Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | - Ryuichiro Hataya
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - Takaaki Mizuno
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Mototaka Miyake
- Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hirokazu Watanabe
- Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yasuyuki Takamizawa
- Department of Colorectal Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Satoshi Nakamura
- Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center, Exploratory Oncology Research & Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita-shi, Osaka 565-0871, Japan.
| | - Nobuji Kouno
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Amina Bolatkan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| | - Yusuke Kurose
- Machine Intelligence for Medical Engineering Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | - Tatsuya Harada
- Machine Intelligence for Medical Engineering Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
| |
Collapse
|
5
|
Souid A, Alsubaie N, Soufiene BO, Alqahtani MS, Abbas M, Jambi LK, Sakli H. Improving diagnosis accuracy with an intelligent image retrieval system for lung pathologies detection: a features extractor approach. Sci Rep 2023; 13:16619. [PMID: 37789095 PMCID: PMC10547797 DOI: 10.1038/s41598-023-42366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023] Open
Abstract
Detecting lung pathologies is critical for precise medical diagnosis. In the realm of diagnostic methods, various approaches, including imaging tests, physical examinations, and laboratory tests, contribute to this process. Of particular note, imaging techniques like X-rays, CT scans, and MRI scans play a pivotal role in identifying lung pathologies with their non-invasive insights. Deep learning, a subset of artificial intelligence, holds significant promise in revolutionizing the detection and diagnosis of lung pathologies. By leveraging expansive datasets, deep learning algorithms autonomously discern intricate patterns and features within medical images, such as chest X-rays and CT scans. These algorithms exhibit an exceptional capacity to recognize subtle markers indicative of lung diseases. Yet, while their potential is evident, inherent limitations persist. The demand for abundant labeled data during training and the susceptibility to data biases challenge their accuracy. To address these formidable challenges, this research introduces a tailored computer-assisted system designed for the automatic retrieval of annotated medical images that share similar content. At its core lies an intelligent deep learning-based features extractor, adept at simplifying the retrieval of analogous images from an extensive chest radiograph database. The crux of our innovation rests upon the fusion of YOLOv5 and EfficientNet within the features extractor module. This strategic fusion synergizes YOLOv5's rapid and efficient object detection capabilities with EfficientNet's proficiency in combating noisy predictions. The result is a distinctive amalgamation that redefines the efficiency and accuracy of features extraction. Through rigorous experimentation conducted on an extensive and diverse dataset, our proposed solution decisively surpasses conventional methodologies. The model's achievement of a mean average precision of 0.488 with a threshold of 0.9 stands as a testament to its effectiveness, overshadowing the results of YOLOv5 + ResNet and EfficientDet, which achieved 0.234 and 0.257 respectively. Furthermore, our model demonstrates a marked precision improvement, attaining a value of 0.864 across all pathologies-a noteworthy leap of approximately 0.352 compared to YOLOv5 + ResNet and EfficientDet. This research presents a significant stride toward enhancing radiologists' workflow efficiency, offering a refined and proficient tool for retrieving analogous annotated medical images.
Collapse
Affiliation(s)
- Abdelbaki Souid
- MACS Research Laboratory RL16ES22, National Engineering School of Gabes, Gabes, Tunisia
| | - Najah Alsubaie
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Ben Othman Soufiene
- PRINCE Laboratory Research, ISITcom, University of Sousse, Hammam Sousse, Tunisia.
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE17RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Layal K Jambi
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433, Riyadh, Saudi Arabia
| | - Hedi Sakli
- MACS Research Laboratory RL16ES22, National Engineering School of Gabes, Gabes, Tunisia
- EITA Consulting, 5 Rue Du Chant Des Oiseaux, 78360, Montesson, France
| |
Collapse
|
6
|
Sugibayashi T, Walston SL, Matsumoto T, Mitsuyama Y, Miki Y, Ueda D. Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis. Eur Respir Rev 2023; 32:32/168/220259. [PMID: 37286217 DOI: 10.1183/16000617.0259-2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/16/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Deep learning (DL), a subset of artificial intelligence (AI), has been applied to pneumothorax diagnosis to aid physician diagnosis, but no meta-analysis has been performed. METHODS A search of multiple electronic databases through September 2022 was performed to identify studies that applied DL for pneumothorax diagnosis using imaging. Meta-analysis via a hierarchical model to calculate the summary area under the curve (AUC) and pooled sensitivity and specificity for both DL and physicians was performed. Risk of bias was assessed using a modified Prediction Model Study Risk of Bias Assessment Tool. RESULTS In 56 of the 63 primary studies, pneumothorax was identified from chest radiography. The total AUC was 0.97 (95% CI 0.96-0.98) for both DL and physicians. The total pooled sensitivity was 84% (95% CI 79-89%) for DL and 85% (95% CI 73-92%) for physicians and the pooled specificity was 96% (95% CI 94-98%) for DL and 98% (95% CI 95-99%) for physicians. More than half of the original studies (57%) had a high risk of bias. CONCLUSIONS Our review found the diagnostic performance of DL models was similar to that of physicians, although the majority of studies had a high risk of bias. Further pneumothorax AI research is needed.
Collapse
Affiliation(s)
- Takahiro Sugibayashi
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shannon L Walston
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Toshimasa Matsumoto
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Smart Life Science Lab, Center for Health Science Innovation, Osaka Metropolitan University, Osaka, Japan
| | - Yasuhito Mitsuyama
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yukio Miki
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Smart Life Science Lab, Center for Health Science Innovation, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
7
|
Wickstrøm KK, Østmo EA, Radiya K, Mikalsen KØ, Kampffmeyer MC, Jenssen R. A clinically motivated self-supervised approach for content-based image retrieval of CT liver images. Comput Med Imaging Graph 2023; 107:102239. [PMID: 37207397 DOI: 10.1016/j.compmedimag.2023.102239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Deep learning-based approaches for content-based image retrieval (CBIR) of computed tomography (CT) liver images is an active field of research, but suffer from some critical limitations. First, they are heavily reliant on labeled data, which can be challenging and costly to acquire. Second, they lack transparency and explainability, which limits the trustworthiness of deep CBIR systems. We address these limitations by: (1) Proposing a self-supervised learning framework that incorporates domain-knowledge into the training procedure, and, (2) by providing the first representation learning explainability analysis in the context of CBIR of CT liver images. Results demonstrate improved performance compared to the standard self-supervised approach across several metrics, as well as improved generalization across datasets. Further, we conduct the first representation learning explainability analysis in the context of CBIR, which reveals new insights into the feature extraction process. Lastly, we perform a case study with cross-examination CBIR that demonstrates the usability of our proposed framework. We believe that our proposed framework could play a vital role in creating trustworthy deep CBIR systems that can successfully take advantage of unlabeled data.
Collapse
Affiliation(s)
- Kristoffer Knutsen Wickstrøm
- Machine Learning Group at the Department of Physics and Technology, UiT the Arctic University of Norway, Tromsø NO-9037, Norway.
| | - Eirik Agnalt Østmo
- Machine Learning Group at the Department of Physics and Technology, UiT the Arctic University of Norway, Tromsø NO-9037, Norway
| | - Keyur Radiya
- Department of Gastrointestinal Surgery, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Karl Øyvind Mikalsen
- Machine Learning Group at the Department of Physics and Technology, UiT the Arctic University of Norway, Tromsø NO-9037, Norway; Department of Gastrointestinal Surgery, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Michael Christian Kampffmeyer
- Machine Learning Group at the Department of Physics and Technology, UiT the Arctic University of Norway, Tromsø NO-9037, Norway; Norwegian Computing Center, Department SAMBA, P.O. Box 114 Blindern, Oslo NO-0314, Norway
| | - Robert Jenssen
- Machine Learning Group at the Department of Physics and Technology, UiT the Arctic University of Norway, Tromsø NO-9037, Norway; Norwegian Computing Center, Department SAMBA, P.O. Box 114 Blindern, Oslo NO-0314, Norway; Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 København Ø, Denmark
| |
Collapse
|
8
|
Ahmad J, Saudagar AKJ, Malik KM, Khan MB, AlTameem A, Alkhathami M, Hasanat MHA. Prognosis Prediction in COVID-19 Patients through Deep Feature Space Reasoning. Diagnostics (Basel) 2023; 13:diagnostics13081387. [PMID: 37189488 DOI: 10.3390/diagnostics13081387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
The COVID-19 pandemic has presented a unique challenge for physicians worldwide, as they grapple with limited data and uncertainty in diagnosing and predicting disease outcomes. In such dire circumstances, the need for innovative methods that can aid in making informed decisions with limited data is more critical than ever before. To allow prediction with limited COVID-19 data as a case study, we present a complete framework for progression and prognosis prediction in chest X-rays (CXR) through reasoning in a COVID-specific deep feature space. The proposed approach relies on a pre-trained deep learning model that has been fine-tuned specifically for COVID-19 CXRs to identify infection-sensitive features from chest radiographs. Using a neuronal attention-based mechanism, the proposed method determines dominant neural activations that lead to a feature subspace where neurons are more sensitive to COVID-related abnormalities. This process allows the input CXRs to be projected into a high-dimensional feature space where age and clinical attributes like comorbidities are associated with each CXR. The proposed method can accurately retrieve relevant cases from electronic health records (EHRs) using visual similarity, age group, and comorbidity similarities. These cases are then analyzed to gather evidence for reasoning, including diagnosis and treatment. By using a two-stage reasoning process based on the Dempster-Shafer theory of evidence, the proposed method can accurately predict the severity, progression, and prognosis of a COVID-19 patient when sufficient evidence is available. Experimental results on two large datasets show that the proposed method achieves 88% precision, 79% recall, and 83.7% F-score on the test sets.
Collapse
Affiliation(s)
- Jamil Ahmad
- Department of Computer Science, Islamia College Peshawar, Peshawar 25120, Pakistan
| | | | - Khalid Mahmood Malik
- Department of Computer Science and Engineering, Oakland University, Rochester, MI 48309, USA
| | - Muhammad Badruddin Khan
- Information Systems Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Abdullah AlTameem
- Information Systems Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Mohammed Alkhathami
- Information Systems Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | | |
Collapse
|
9
|
Chandra TB, Singh BK, Jain D. Disease Localization and Severity Assessment in Chest X-Ray Images using Multi-Stage Superpixels Classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106947. [PMID: 35749885 PMCID: PMC9403875 DOI: 10.1016/j.cmpb.2022.106947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Chest X-ray (CXR) is a non-invasive imaging modality used in the prognosis and management of chronic lung disorders like tuberculosis (TB), pneumonia, coronavirus disease (COVID-19), etc. The radiomic features associated with different disease manifestations assist in detection, localization, and grading the severity of infected lung regions. The majority of the existing computer-aided diagnosis (CAD) system used these features for the classification task, and only a few works have been dedicated to disease-localization and severity scoring. Moreover, the existing deep learning approaches use class activation map and Saliency map, which generate a rough localization. This study aims to generate a compact disease boundary, infection map, and grade the infection severity using proposed multistage superpixel classification-based disease localization and severity assessment framework. METHODS The proposed method uses a simple linear iterative clustering (SLIC) technique to subdivide the lung field into small superpixels. Initially, the different radiomic texture and proposed shape features are extracted and combined to train different benchmark classifiers in a multistage framework. Subsequently, the predicted class labels are used to generate an infection map, mark disease boundary, and grade the infection severity. The performance is evaluated using a publicly available Montgomery dataset and validated using Friedman average ranking and Holm and Nemenyi post-hoc procedures. RESULTS The proposed multistage classification approach achieved accuracy (ACC)= 95.52%, F-Measure (FM)= 95.48%, area under the curve (AUC)= 0.955 for Stage-I and ACC=85.35%, FM=85.20%, AUC=0.853 for Stage-II using calibration dataset and ACC = 93.41%, FM = 95.32%, AUC = 0.936 for Stage-I and ACC = 84.02%, FM = 71.01%, AUC = 0.795 for Stage-II using validation dataset. Also, the model has demonstrated the average Jaccard Index (JI) of 0.82 and Pearson's correlation coefficient (r) of 0.9589. CONCLUSIONS The obtained classification results using calibration and validation dataset confirms the promising performance of the proposed framework. Also, the average JI shows promising potential to localize the disease, and better agreement between radiologist score and predicted severity score (r) confirms the robustness of the method. Finally, the statistical test justified the significance of the obtained results.
Collapse
Affiliation(s)
- Tej Bahadur Chandra
- Department of Computer Applications, National Institute of Technology Raipur, Chhattisgarh, India.
| | - Bikesh Kumar Singh
- Department of Biomedical Engineering, National Institute of Technology Raipur, Chhattisgarh, India
| | - Deepak Jain
- Department of Radiodiagnosis, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| |
Collapse
|
10
|
Guan A, Liu L, Fu X, Liu L. Precision medical image hash retrieval by interpretability and feature fusion. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106945. [PMID: 35749884 DOI: 10.1016/j.cmpb.2022.106945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE To address the problem of low accuracy of medical image retrieval due to high inter-class similarity and easy omission of lesions, a precision medical image hash retrieval method combining interpretability and feature fusion is proposed, taking chest X-ray images as an example. METHODS Firstly, the DenseNet-121 network is pre-trained on a large dataset of medical images without manual annotation using the comparison to learn (C2L) method to obtain a backbone network model containing more medical representations with training weights. Then, a global network is constructed by using global image learning to acquire an interpretable saliency map as attention mechanisms, which can generate a mask crop to get a local discriminant region. Thirdly, the local discriminant regions are used as local network inputs to obtain local features, and the global features are used with the local features by dimension in the pooling layer. Finally, a hash layer is added between the fully connected layer and the classification layer of the backbone network, defining classification loss, quantization loss and bit-balanced loss functions to generate high-quality hash codes. The final retrieval result is output by calculating the similarity metric of the hash codes. RESULTS Experiments on the Chest X-ray8 dataset demonstrate that our proposed interpretable saliency map can effectively locate focal regions, the fusion of features can avoid information omission, and the combination of three loss functions can generate more accurate hash codes. Compared with the current advanced medical image retrieval methods, this method can effectively improve the accuracy of medical image retrieval. CONCLUSIONS The proposed hash retrieval approach combining interpretability and feature fusion can effectively improve the accuracy of medical image retrieval which can be potentially applied in computer-aided-diagnosis systems.
Collapse
Affiliation(s)
- Anna Guan
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Computer Technology Application Key Lab of Yunnan Province, Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Computer Technology Application Key Lab of Yunnan Province, Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Computer Technology Application Key Lab of Yunnan Province, Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
11
|
Decomposing normal and abnormal features of medical images for content-based image retrieval of glioma imaging. Med Image Anal 2021; 74:102227. [PMID: 34543911 DOI: 10.1016/j.media.2021.102227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022]
Abstract
In medical imaging, the characteristics purely derived from a disease should reflect the extent to which abnormal findings deviate from the normal features. Indeed, physicians often need corresponding images without abnormal findings of interest or, conversely, images that contain similar abnormal findings regardless of normal anatomical context. This is called comparative diagnostic reading of medical images, which is essential for a correct diagnosis. To support comparative diagnostic reading, content-based image retrieval (CBIR) that can selectively utilize normal and abnormal features in medical images as two separable semantic components will be useful. In this study, we propose a neural network architecture to decompose the semantic components of medical images into two latent codes: normal anatomy code and abnormal anatomy code. The normal anatomy code represents counterfactual normal anatomies that should have existed if the sample is healthy, whereas the abnormal anatomy code attributes to abnormal changes that reflect deviation from the normal baseline. By calculating the similarity based on either normal or abnormal anatomy codes or the combination of the two codes, our algorithm can retrieve images according to the selected semantic component from a dataset consisting of brain magnetic resonance images of gliomas. Moreover, it can utilize a synthetic query vector combining normal and abnormal anatomy codes from two different query images. To evaluate whether the retrieved images are acquired according to the targeted semantic component, the overlap of the ground-truth labels is calculated as metrics of the semantic consistency. Our algorithm provides a flexible CBIR framework by handling the decomposed features with qualitatively and quantitatively remarkable results.
Collapse
|
12
|
Çallı E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy K. Deep learning for chest X-ray analysis: A survey. Med Image Anal 2021; 72:102125. [PMID: 34171622 DOI: 10.1016/j.media.2021.102125] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
Recent advances in deep learning have led to a promising performance in many medical image analysis tasks. As the most commonly performed radiological exam, chest radiographs are a particularly important modality for which a variety of applications have been researched. The release of multiple, large, publicly available chest X-ray datasets in recent years has encouraged research interest and boosted the number of publications. In this paper, we review all studies using deep learning on chest radiographs published before March 2021, categorizing works by task: image-level prediction (classification and regression), segmentation, localization, image generation and domain adaptation. Detailed descriptions of all publicly available datasets are included and commercial systems in the field are described. A comprehensive discussion of the current state of the art is provided, including caveats on the use of public datasets, the requirements of clinically useful systems and gaps in the current literature.
Collapse
Affiliation(s)
- Erdi Çallı
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands.
| | - Ecem Sogancioglu
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Bram van Ginneken
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Kicky G van Leeuwen
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Keelin Murphy
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| |
Collapse
|