1
|
Huang S, Liu Y, Zhang J, Wang Y. Multimodal attention fusion deep self-reconstruction presentation model for Alzheimer's disease diagnosis and biomarker identification. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:231-243. [PMID: 40411137 DOI: 10.1080/21691401.2025.2506591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/26/2025]
Abstract
The unknown pathogenic mechanisms of Alzheimer's disease (AD) make treatment challenging. Neuroimaging genetics offers a method for identifying disease biomarkers for early diagnosis, but traditional approaches struggle with complex non-linear, multimodal and multi-expression data. However, traditional association analysis methods face challenges in handling nonlinear, multimodal and multi-expression data. Therefore, a multimodal attention fusion deep self-restructuring presentation (MAFDSRP) model is proposed to solve the above problem. First, multimodal brain imaging data are processed through a novel histogram-matching multiple attention mechanisms to dynamically adjust the weight of each input brain image data. Simultaneous, the genetic data are preprocessed to remove low-quality samples. Subsequently, the genetic data and fused neuroimaging data are separately input into the self-reconstruction network to learn the nonlinear relationships and perform subspace clustering at the top layer of the network. Finally, the learned genetic data and fused neuroimaging data are analysed through expression association analysis to identify AD-related biomarkers. The identified biomarkers underwent systematic multi-level analysis, revealing biomarker roles at molecular, tissue and functional levels, highlighting processes like inflammation, lipid metabolism, memory and emotional processing linked to AD. The experimental results show that MAFDSRP achieved 0.58 in association analysis, demonstrating its great potential in accurately identifying AD-related biomarkers.
Collapse
Affiliation(s)
- Shan Huang
- The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yixin Liu
- Modern Education Technology Center, Harbin Medical University, Harbin, China
| | - Jingyu Zhang
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiming Wang
- School of Computer and Control Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Zhang J, Yang Y, Shang M, Guo L, Zhang D, Du L, for the Alzheimer’s Disease Neuroimaging Initiative. Mutual-assistance learning for trustworthy biomarker discovery and disease prediction. Brief Bioinform 2025; 26:bbaf178. [PMID: 40254831 PMCID: PMC12009715 DOI: 10.1093/bib/bbaf178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Integrating and analyzing multiple omics datasets, such as genomics, environmental influences, and imaging endophenotypes, has yielded an abundance of candidate biomarkers. However, translating such findings into beneficial clinical knowledge for disease prediction remains challenging. This becomes even more challenging when studying interpretable high-order feature interactions such as gene-environment interaction (G$\times $E) to understand the etiology. To fill this gap, we draw on the idea of mutual-assistance (MA) learning and accordingly propose a fresh and powerful scheme, referred to as mutual-assistance causal biomarker discovery and stable disease prediction approach (MA-CBxDP). Specifically, we design an interpretable bi-directional mapping framework, integrated with a causal feature interaction module, to extract co-expression patterns across different modalities and identify trustworthy biomarkers including G$\times $E. A cooperative prediction module is further incorporated to ensure accurate diagnosis and identification of causal effects for pathogenesis. Importantly, biomarker discovery and disease prediction can mutually reinforce each other, helping to provide novel insights into chronic diseases. Furthermore, in light of the large computational burden incurred by the high-dimensional interactions, we devise a rapid strategy and extend it to a more practical but challenging chromosome-wide setting. We conduct extensive experiments on two databases under three tasks, i.e. multimodal correlation, disease diagnosis, and trait prediction. MA-CBxDP establishes new state-of-the-art results in predicting clinical scores and disease status classification, while maintaining exceptional interpretability, verifying its flexibility and versatility in practical applications.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Intelligent Science and Technology, Northwestern Polytechnical University, 127 Youyi Road, 710072 Shaanxi, China
| | - Yan Yang
- Department of Intelligent Science and Technology, Northwestern Polytechnical University, 127 Youyi Road, 710072 Shaanxi, China
| | - Muheng Shang
- Department of Intelligent Science and Technology, Northwestern Polytechnical University, 127 Youyi Road, 710072 Shaanxi, China
| | - Lei Guo
- Department of Intelligent Science and Technology, Northwestern Polytechnical University, 127 Youyi Road, 710072 Shaanxi, China
| | - Daoqiang Zhang
- School of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Jiangning District, 210000 Nanjing, China
| | - Lei Du
- Department of Intelligent Science and Technology, Northwestern Polytechnical University, 127 Youyi Road, 710072 Shaanxi, China
| | | |
Collapse
|
3
|
Rehman H, Ang TFA, Tao Q, Au R, Farrer LA, Qiu WQ, Zhang X, for the Alzheimer's Disease Neuroimaging Initiative. Plasma protein risk scores for mild cognitive impairment and Alzheimer's disease in the Framingham heart study. Alzheimers Dement 2025; 21:e70066. [PMID: 40156298 PMCID: PMC11953566 DOI: 10.1002/alz.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION It is unclear whether aggregated plasma protein risk scores (PPRSs) could be useful in predicting the risks of mild cognitive impairment (MCI) and Alzheimer's disease (AD). METHODS The Cox proportional hazard model with the Least Absolute Shrinkage and Selection Operator penalty was used to build the PPRSs for MCI and AD in 1515 Framingham Heart Study Generation 2 with 1128 proteins measured in plasma at exam 5 (cognitively normal [CN] = 1258, MCI = 129, AD = 128). RESULTS MCI PPRS had a hazard ratio (HR) of 6.97 [5.34, 9.12], with a discriminating power (C-index = 82.52%). AD PPRS had a HR of 5.74 [4.67, 7.05] (C-index = 88.15%). Both PPRSs were also significantly associated with cognitive changes, brain atrophy, and plasma AD biomarkers. Proteins in the MCI and AD PPRSs were involved in several pathways related to leukocyte, chemotaxis, immunity, inflammation, and cellular migration. DISCUSSION This study suggests that PPRSs serve well to predict the risk of developing MCI and AD as well as cognitive changes and AD-related pathogenesis in the brain. HIGHLIGHTS PPRSs were developed for the risk of AD and AD preclinical stage, MCI. PPRSs were developed for MCI and AD associated with cognitive changes, loss of brain volume, and increasing level of plasma AD biomarkers. Leukocyte, chemotaxis, immunity, inflammation, and cellular migration enriched in proteins were identified as being involved in MCI and AD PPRSs.
Collapse
Grants
- Alzheimer's Disease Neuroimaging Initiative
- U01 AG024904 NIH HHS
- W81XWH-12-2-0012 (DOD) ADNI
- National Institute on Aging (NIA)
- the National Institute of Biomedical Imaging and Bioengineering
- AbbVie
- Alzheimer's Association
- Alzheimer's Drug Discovery Foundation
- Araclon Biotech
- BioClinica, Inc.
- Biogen
- Bristol-Myers Squibb Company
- CereSpir, Inc.
- Cogstate
- Eisai Inc.
- Elan Pharmaceuticals, Inc.
- Eli Lilly and Co.
- EuroImmun
- F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.
- Fujirebio
- GE Healthcare
- IXICO Ltd.
- Janssen Alzheimer Immunotherapy Research & Development, LLC
- Johnson & Johnson Pharmaceutical Research & Development LLC
- Lumosity
- Merck & Co., Inc.
- Meso Scale Diagnostics, LLC
- NeuroRx Research
- Neurotrack Technologies
- Novartis Pharmaceuticals Corp.
- Pfizer Inc.
- Piramal Imaging
- Servier
- Takeda Pharmaceutical Company
- Transition Therapeutics
- CIHR
- N01-HC-25195 Framingham Heart Study's National Heart, Lung, and Blood Institute
- U19-AG068753 NIA NIH HHS
- RF1AG075832-01A1 NIA NIH HHS
- U01-AG072577 NIA NIH HHS
- R01-AG080810 NIA NIH HHS
- U19-AG068753 Framingham Heart Study Brain Aging Program (FHS-BAP) pilot
- NSF DMS/NIGMS-2347698 National Science Foundation
- Alzheimer's Disease Neuroimaging Initiative
- National Institutes of Health
- AbbVie
- Alzheimer's Association
- Alzheimer's Drug Discovery Foundation
- BioClinica, Inc.
- Biogen
- Bristol‐Myers Squibb Company
- Fujirebio
- GE Healthcare
- Merck & Co., Inc.
- Pfizer Inc.
- Servier
- Takeda Pharmaceutical Company
- Canadian Institutes of Health Research
- NIA
- National Science Foundation
Collapse
Affiliation(s)
- Habbiburr Rehman
- Departments of Medicine (Biomedical Genetics)Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Ting Fang Alvin Ang
- Departments of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Departments of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Qiushan Tao
- Departments of Pharmacology & Experimental TherapeuticsBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Rhoda Au
- Departments of Medicine (Biomedical Genetics)Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Departments of Anatomy & NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Departments of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Departments of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
- Alzheimer's Disease Research CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Lindsay A. Farrer
- Departments of Medicine (Biomedical Genetics)Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Departments of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Departments of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
- Alzheimer's Disease Research CenterBoston University School of MedicineBostonMassachusettsUSA
- Departments of OphthalmologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Departments of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Wei Qiao Qiu
- Departments of Pharmacology & Experimental TherapeuticsBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease Research CenterBoston University School of MedicineBostonMassachusettsUSA
- Departments of PsychiatryBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Xiaoling Zhang
- Departments of Medicine (Biomedical Genetics)Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
- Departments of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | | |
Collapse
|
4
|
Zou Q, Shang J, Liu JX, Gao R. BIGFormer: A Graph Transformer With Local Structure Awareness for Diagnosis and Pathogenesis Identification of Alzheimer's Disease Using Imaging Genetic Data. IEEE J Biomed Health Inform 2025; 29:495-506. [PMID: 39186432 DOI: 10.1109/jbhi.2024.3442468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Alzheimer's disease (AD) is a highly inheritable neurological disorder, and brain imaging genetics (BIG) has become a rapidly advancing field for comprehensive understanding its pathogenesis. However, most of the existing approaches underestimate the complexity of the interactions among factors that cause AD. To take full appreciate of these complexity interactions, we propose BIGFormer, a graph Transformer with local structural awareness, for AD diagnosis and identification of pathogenic mechanisms. Specifically, the factors interaction graph is constructed with lesion brain regions and risk genes as nodes, where the connection between nodes intuitively represents the interaction between nodes. After that, a perception with local structure awareness is built to extract local structure around nodes, which is then injected into node representation. Then, the global reliance inference component assembles the local structure into higher-order structure, and multi-level interaction structures are jointly aggregated into a classification projection head for disease state prediction. Experimental results show that BIGFormer demonstrated superiority in four classification tasks on the AD neuroimaging initiative dataset and proved to identify biomarkers closely intimately related to AD.
Collapse
|
5
|
Yu C, Zhang S, Shang M, Guo L, Han J, Du L. A Multi-Task Deep Feature Selection Method for Brain Imaging Genetics. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1613-1622. [PMID: 37432805 DOI: 10.1109/tcbb.2023.3294413] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Using brain imaging quantitative traits (QTs) for identifying genetic risk factors is an important research topic in brain imaging genetics. Many efforts have been made for this task via building linear models between imaging QTs and genetic factors such as single nucleotide polymorphisms (SNPs). To the best of our knowledge, linear models could not fully uncover the complicated relationship due to the loci's elusive and diverse influences on imaging QTs. In this paper, we propose a novel multi-task deep feature selection (MTDFS) method for brain imaging genetics. MTDFS first builds a multi-task deep neural network to model the complicated associations between imaging QTs and SNPs. And then designs a multi-task one-to-one layer and imposes a combined penalty to identify SNPs that make significant contributions. MTDFS can not only extract the nonlinear relationship but also arms the deep neural network with feature selection. We compared MTDFS to multi-task linear regression (MTLR) and single-task DFS (DFS) methods on the real neuroimaging genetic data. The experimental results showed that MTDFS performed better than MTLR and DFS on the QT-SNP relationship identification and feature selection. Thus, MTDFS is powerful for identifying risk loci and could be a great supplement to brain imaging genetics.
Collapse
|
6
|
Lei B, Li Y, Fu W, Yang P, Chen S, Wang T, Xiao X, Niu T, Fu Y, Wang S, Han H, Qin J. Alzheimer's disease diagnosis from multi-modal data via feature inductive learning and dual multilevel graph neural network. Med Image Anal 2024; 97:103213. [PMID: 38850625 DOI: 10.1016/j.media.2024.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Multi-modal data can provide complementary information of Alzheimer's disease (AD) and its development from different perspectives. Such information is closely related to the diagnosis, prevention, and treatment of AD, and hence it is necessary and critical to study AD through multi-modal data. Existing learning methods, however, usually ignore the influence of feature heterogeneity and directly fuse features in the last stages. Furthermore, most of these methods only focus on local fusion features or global fusion features, neglecting the complementariness of features at different levels and thus not sufficiently leveraging information embedded in multi-modal data. To overcome these shortcomings, we propose a novel framework for AD diagnosis that fuses gene, imaging, protein, and clinical data. Our framework learns feature representations under the same feature space for different modalities through a feature induction learning (FIL) module, thereby alleviating the impact of feature heterogeneity. Furthermore, in our framework, local and global salient multi-modal feature interaction information at different levels is extracted through a novel dual multilevel graph neural network (DMGNN). We extensively validate the proposed method on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and experimental results demonstrate our method consistently outperforms other state-of-the-art multi-modal fusion methods. The code is publicly available on the GitHub website. (https://github.com/xiankantingqianxue/MIA-code.git).
Collapse
Affiliation(s)
- Baiying Lei
- National-Regional Key Technology Engineering Lab. for Medical Ultrasound, Guangdong Key Lab. for Biomedical Measurements and Ultrasound Imaging, Marshall Lab. of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Yafeng Li
- National-Regional Key Technology Engineering Lab. for Medical Ultrasound, Guangdong Key Lab. for Biomedical Measurements and Ultrasound Imaging, Marshall Lab. of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Wanyi Fu
- Department of Electronic Engineering, Tsinghua University, Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, China
| | - Peng Yang
- National-Regional Key Technology Engineering Lab. for Medical Ultrasound, Guangdong Key Lab. for Biomedical Measurements and Ultrasound Imaging, Marshall Lab. of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Shaobin Chen
- National-Regional Key Technology Engineering Lab. for Medical Ultrasound, Guangdong Key Lab. for Biomedical Measurements and Ultrasound Imaging, Marshall Lab. of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Tianfu Wang
- National-Regional Key Technology Engineering Lab. for Medical Ultrasound, Guangdong Key Lab. for Biomedical Measurements and Ultrasound Imaging, Marshall Lab. of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Xiaohua Xiao
- The First Affiliated Hospital of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 530031, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, No. 49, North Garden Rd., Haidian District, Beijing, 100191, China.
| | - Shuqiang Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Department of Radiology, Peking University Third Hospital, Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Beijing, 100191, China; The second hospital of Dalian Medical University,Research and developing center of medical technology, Dalian, 116027, China.
| | - Jing Qin
- Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
7
|
Bi XA, Wang Y, Luo S, Chen K, Xing Z, Xu L. Hypergraph Structural Information Aggregation Generative Adversarial Networks for Diagnosis and Pathogenetic Factors Identification of Alzheimer's Disease With Imaging Genetic Data. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7420-7434. [PMID: 36264725 DOI: 10.1109/tnnls.2022.3212700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with profound pathogenetic causes. Imaging genetic data analysis can provide comprehensive insights into its causes. To fully utilize the multi-level information in the data, this article proposes a hypergraph structural information aggregation model, and constructs a novel deep learning method named hypergraph structural information aggregation generative adversarial networks (HSIA-GANs) for the automatic sample classification and accurate feature extraction. Specifically, HSIA-GAN is composed of generator and discriminator. The generator has three main functions. First, vertex graph and edge graph are constructed based on the input hypergraph to present the low-order relations. Second, the low-order structural information of hypergraph is extracted by the designed vertex convolution layers and edge convolution layers. Finally, the synthetic hypergraph is generated as the input of the discriminator. The discriminator can extract the high-order structural information directly from hypergraph through vertex-edge convolution, fuse the high and low-order structural information, and finalize the results through the full connection (FC) layers. Based on the data acquired from AD neuroimaging initiative, HSIA-GAN shows significant advantages in three classification tasks, and extracts discriminant features conducive to better disease classification.
Collapse
|
8
|
Yang R, Kong W, Liu K, Wen G, Yu Y. Exploring Imaging Genetic Markers of Alzheimer's Disease Based on a Novel Nonlinear Correlation Analysis Algorithm. J Mol Neurosci 2024; 74:35. [PMID: 38568443 DOI: 10.1007/s12031-024-02190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 04/05/2024]
Abstract
Alzheimer's disease (AD) is an irreversible neurological disorder characterized by insidious onset. Identifying potential markers in its emergence and progression is crucial for early diagnosis and treatment. Imaging genetics typically merges genetic variables with multiple imaging parameters, employing various association analysis algorithms to investigate the links between pathological phenotypes and genetic variations, and to unearth molecular-level insights from brain images. However, most existing imaging genetics algorithms based on sparse learning assume a linear relationship between genetic factors and brain functions, limiting their ability to discern complex nonlinear correlation patterns and resulting in reduced accuracy. To address these issues, we propose a novel nonlinear imaging genetic association analysis method, Deep Self-Reconstruction-based Adaptive Sparse Multi-view Deep Generalized Canonical Correlation Analysis (DSR-AdaSMDGCCA). This approach facilitates joint learning of the nonlinear relationships between pathological phenotypes and genetic variations by integrating three different types of data: structural magnetic resonance imaging (sMRI), single-nucleotide polymorphism (SNP), and gene expression data. By incorporating nonlinear transformations in DGCCA, our model effectively uncovers nonlinear associations across multiple data types. Additionally, the DSR algorithm clusters samples with identical labels, incorporating label information into the nonlinear feature extraction process and thus enhancing the performance of association analysis. The application of the DSR-AdaSMDGCCA algorithm on real data sets identified several AD risk regions (such as the hippocampus, parahippocampus, and fusiform gyrus) and risk genes (including VSIG4, NEDD4L, and PINK1), achieving maximum classification accuracy with the fewest selected features compared to baseline algorithms. Molecular biology enrichment analysis revealed that the pathways enriched by these top genes are intimately linked to AD progression, affirming that our algorithm not only improves correlation analysis performance but also identifies biologically significant markers.
Collapse
Affiliation(s)
- Renbo Yang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China.
| | - Kun Liu
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
9
|
Liang S, Xu S, Zhou S, Chang C, Shao Z, Wang Y, Chen S, Huang Y, Guo Y. IMAGGS: a radiogenomic framework for identifying multi-way associations in breast cancer subtypes. J Genet Genomics 2024; 51:443-453. [PMID: 37783335 DOI: 10.1016/j.jgg.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Investigating correlations between radiomic and genomic profiling in breast cancer (BC) molecular subtypes is crucial for understanding disease mechanisms and providing personalized treatment. We present a well-designed radiogenomic framework image-gene-gene set (IMAGGS), which detects multi-way associations in BC subtypes by integrating radiomic and genomic features. Our dataset consists of 721 patients, each of whom has 12 ultrasound (US) images captured from different angles and gene mutation data. To better characterize tumor traits, 12 multi-angle US images are fused using two distinct strategies. Then, we analyze complex many-to-many associations between phenotypic and genotypic features using a machine learning algorithm, deviating from the prevalent one-to-one relationship pattern observed in previous studies. Key radiomic and genomic features are screened using these associations. In addition, gene set enrichment analysis is performed to investigate the joint effects of gene sets and delve deeper into the biological functions of BC subtypes. We further validate the feasibility of IMAGGS in a glioblastoma multiforme dataset to demonstrate the scalability of IMAGGS across different modalities and diseases. Taken together, IMAGGS provides a comprehensive characterization for diseases by associating imaging, genes, and gene sets, paving the way for biological interpretation of radiomics and development of targeted therapy.
Collapse
Affiliation(s)
- Shuyu Liang
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China
| | - Sicheng Xu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200433, China
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Cai Chang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhiming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China
| | - Sheng Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yunxia Huang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yi Guo
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; The Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| |
Collapse
|
10
|
Song P, Li X, Yuan X, Pang L, Song X, Wang Y. Identifying frequency-dependent imaging genetic associations via hypergraph-structured multi-task sparse canonical correlation analysis. Comput Biol Med 2024; 171:108051. [PMID: 38335819 DOI: 10.1016/j.compbiomed.2024.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Identifying complex associations between genetic variations and imaging phenotypes is a challenging task in the research of brain imaging genetics. The previous study has proved that neuronal oscillations within distinct frequency bands are derived from frequency-dependent genetic modulation. Thus it is meaningful to explore frequency-dependent imaging genetic associations, which may give important insights into the pathogenesis of brain disorders. In this work, the hypergraph-structured multi-task sparse canonical correlation analysis (HS-MTSCCA) was developed to explore the associations between multi-frequency imaging phenotypes and single-nucleotide polymorphisms (SNPs). Specifically, we first created a hypergraph for the imaging phenotypes of each frequency and the SNPs, respectively. Then, a new hypergraph-structured constraint was proposed to learn high-order relationships among features in each hypergraph, which can introduce biologically meaningful information into the model. The frequency-shared and frequency-specific imaging phenotypes and SNPs could be identified using the multi-task learning framework. We also proposed a useful strategy to tackle this algorithm and then demonstrated its convergence. The proposed method was evaluated on four simulation datasets and a real schizophrenia dataset. The experimental results on synthetic data showed that HS-MTSCCA outperforms the other competing methods according to canonical correlation coefficients, canonical weights, and cosine similarity. And the results on real data showed that HS-MTSCCA could obtain superior canonical coefficients and canonical weights. Furthermore, the identified frequency-shared and frequency-specific biomarkers could provide more interesting and meaningful information, demonstrating that HS-MTSCCA is a powerful method for brain imaging genetics.
Collapse
Affiliation(s)
- Peilun Song
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xue Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lijuan Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yaping Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
11
|
Tu K, Zhou W, Kong S. Exploring biomarkers of Alzheimer's disease based on multi-omics and Mendelian randomisation analysis. Ann Hum Biol 2024; 51:2415035. [PMID: 39508514 DOI: 10.1080/03014460.2024.2415035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with no fully curative treatment. AIM This study aims to identify effective biomarkers for AD diagnosis and treatment by combining multi-omics and Mendelian randomisation (MR) analyses. SUBJECTS AND METHODS Positron emission tomography (PET), single nucleotide polymorphism (SNP), and gene expression data of AD patients using advanced correlation analysis methods (AdaSMCCA, rAdaSMCCA, and unAdaSMCCA algorithms) are integrated. RESULTS Several regions of interest, risk SNP sites, and risk genes associated with AD are identified. Expression quantitative trait loci (eQTL) for the top 100 risk genes are retrieved from public datasets. A two-sample MR analysis using genome-wide association study (GWAS) data reveals two genes (FAM117A and ACSL1) causally related to AD. Additionally, single-cell transcriptome (scRNA-seq) data from AD samples are analysed to identify high-scoring cell clusters and their interactions. CONCLUSIONS The identified multi-omics biomarkers and genes causally related to AD could inform clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Kun Tu
- Department of Radiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Hubei, China
| | - Wenhui Zhou
- Department of Radiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Hubei, China
| | - Shubing Kong
- Department of Radiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Hubei, China
| |
Collapse
|
12
|
Zhang J, Ma Z, Yang Y, Guo L, Du L, the Alzheimer’s Disease Neuroimaging Initiative. Modeling genotype-protein interaction and correlation for Alzheimer's disease: a multi-omics imaging genetics study. Brief Bioinform 2024; 25:bbae038. [PMID: 38348747 PMCID: PMC10939371 DOI: 10.1093/bib/bbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 01/14/2024] [Indexed: 02/15/2024] Open
Abstract
Integrating and analyzing multiple omics data sets, including genomics, proteomics and radiomics, can significantly advance researchers' comprehensive understanding of Alzheimer's disease (AD). However, current methodologies primarily focus on the main effects of genetic variation and protein, overlooking non-additive effects such as genotype-protein interaction (GPI) and correlation patterns in brain imaging genetics studies. Importantly, these non-additive effects could contribute to intermediate imaging phenotypes, finally leading to disease occurrence. In general, the interaction between genetic variations and proteins, and their correlations are two distinct biological effects, and thus disentangling the two effects for heritable imaging phenotypes is of great interest and need. Unfortunately, this issue has been largely unexploited. In this paper, to fill this gap, we propose $\textbf{M}$ulti-$\textbf{T}$ask $\textbf{G}$enotype-$\textbf{P}$rotein $\textbf{I}$nteraction and $\textbf{C}$orrelation disentangling method ($\textbf{MT-GPIC}$) to identify GPI and extract correlation patterns between them. To ensure stability and interpretability, we use novel and off-the-shelf penalties to identify meaningful genetic risk factors, as well as exploit the interconnectedness of different brain regions. Additionally, since computing GPI poses a high computational burden, we develop a fast optimization strategy for solving MT-GPIC, which is guaranteed to converge. Experimental results on the Alzheimer's Disease Neuroimaging Initiative data set show that MT-GPIC achieves higher correlation coefficients and classification accuracy than state-of-the-art methods. Moreover, our approach could effectively identify interpretable phenotype-related GPI and correlation patterns in high-dimensional omics data sets. These findings not only enhance the diagnostic accuracy but also contribute valuable insights into the underlying pathogenic mechanisms of AD.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Zikang Ma
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Yan Yang
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Lei Guo
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | - Lei Du
- Department of Intelligent Science and Technology, Northwestern Polytechnical University School of Automation, 127 Youyi Road, 710072 Shaanxi, China
| | | |
Collapse
|
13
|
Guo R, Tian X, Lin H, McKenna S, Li HD, Guo F, Liu J. Graph-Based Fusion of Imaging, Genetic and Clinical Data for Degenerative Disease Diagnosis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:57-68. [PMID: 37991907 DOI: 10.1109/tcbb.2023.3335369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Graph learning methods have achieved noteworthy performance in disease diagnosis due to their ability to represent unstructured information such as inter-subject relationships. While it has been shown that imaging, genetic and clinical data are crucial for degenerative disease diagnosis, existing methods rarely consider how best to use their relationships. How best to utilize information from imaging, genetic and clinical data remains a challenging problem. This study proposes a novel graph-based fusion (GBF) approach to meet this challenge. To extract effective imaging-genetic features, we propose an imaging-genetic fusion module which uses an attention mechanism to obtain modality-specific and joint representations within and between imaging and genetic data. Then, considering the effectiveness of clinical information for diagnosing degenerative diseases, we propose a multi-graph fusion module to further fuse imaging-genetic and clinical features, which adopts a learnable graph construction strategy and a graph ensemble method. Experimental results on two benchmarks for degenerative disease diagnosis (Alzheimers Disease Neuroimaging Initiative and Parkinson's Progression Markers Initiative) demonstrate its effectiveness compared to state-of-the-art graph-based methods. Our findings should help guide further development of graph-based models for dealing with imaging, genetic and clinical data.
Collapse
|
14
|
Wang T, Chen X, Zhang J, Feng Q, Huang M. Deep multimodality-disentangled association analysis network for imaging genetics in neurodegenerative diseases. Med Image Anal 2023; 88:102842. [PMID: 37247468 DOI: 10.1016/j.media.2023.102842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Imaging genetics is a crucial tool that is applied to explore potentially disease-related biomarkers, particularly for neurodegenerative diseases (NDs). With the development of imaging technology, the association analysis between multimodal imaging data and genetic data is gradually being concerned by a wide range of imaging genetics studies. However, multimodal data are fused first and then correlated with genetic data in traditional methods, which leads to an incomplete exploration of their common and complementary information. In addition, the inaccurate formulation in the complex relationships between imaging and genetic data and information loss caused by missing multimodal data are still open problems in imaging genetics studies. Therefore, in this study, a deep multimodality-disentangled association analysis network (DMAAN) is proposed to solve the aforementioned issues and detect the disease-related biomarkers of NDs simultaneously. First, the imaging data are nonlinearly projected into a latent space and imaging representations can be achieved. The imaging representations are further disentangled into common and specific parts by using a multimodal-disentangled module. Second, the genetic data are encoded to achieve genetic representations, and then, the achieved genetic representations are nonlinearly mapped to the common and specific imaging representations to build nonlinear associations between imaging and genetic data through an association analysis module. Moreover, modality mask vectors are synchronously synthesized to integrate the genetic and imaging data, which helps the following disease diagnosis. Finally, the proposed method achieves reasonable diagnosis performance via a disease diagnosis module and utilizes the label information to detect the disease-related modality-shared and modality-specific biomarkers. Furthermore, the genetic representation can be used to impute the missing multimodal data with our learning strategy. Two publicly available datasets with different NDs are used to demonstrate the effectiveness of the proposed DMAAN. The experimental results show that the proposed DMAAN can identify the disease-related biomarkers, which suggests the proposed DMAAN may provide new insights into the pathological mechanism and early diagnosis of NDs. The codes are publicly available at https://github.com/Meiyan88/DMAAN.
Collapse
Affiliation(s)
- Tao Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Jiawei Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Meiyan Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
15
|
Leng Y, Cui W, Peng Y, Yan C, Cao Y, Yan Z, Chen S, Jiang X, Zheng J. Multimodal cross enhanced fusion network for diagnosis of Alzheimer's disease and subjective memory complaints. Comput Biol Med 2023; 157:106788. [PMID: 36958233 DOI: 10.1016/j.compbiomed.2023.106788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023]
Abstract
Deep learning methods using multimodal imagings have been proposed for the diagnosis of Alzheimer's disease (AD) and its early stages (SMC, subjective memory complaints), which may help to slow the progression of the disease through early intervention. However, current fusion methods for multimodal imagings are generally coarse and may lead to suboptimal results through the use of shared extractors or simple downscaling stitching. Another issue with diagnosing brain diseases is that they often affect multiple areas of the brain, making it important to consider potential connections throughout the brain. However, traditional convolutional neural networks (CNNs) may struggle with this issue due to their limited local receptive fields. To address this, many researchers have turned to transformer networks, which can provide global information about the brain but can be computationally intensive and perform poorly on small datasets. In this work, we propose a novel lightweight network called MENet that adaptively recalibrates the multiscale long-range receptive field to localize discriminative brain regions in a computationally efficient manner. Based on this, the network extracts the intensity and location responses between structural magnetic resonance imagings (sMRI) and 18-Fluoro-Deoxy-Glucose Positron Emission computed Tomography (FDG-PET) as an enhancement fusion for AD and SMC diagnosis. Our method is evaluated on the publicly available ADNI datasets and achieves 97.67% accuracy in AD diagnosis tasks and 81.63% accuracy in SMC diagnosis tasks using sMRI and FDG-PET. These results achieve state-of-the-art (SOTA) performance in both tasks. To the best of our knowledge, this is one of the first deep learning research methods for SMC diagnosis with FDG-PET.
Collapse
Affiliation(s)
- Yilin Leng
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China; Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Wenju Cui
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yunsong Peng
- Department of Medical Imaging, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Caiying Yan
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 211103, China
| | - Yuzhu Cao
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhuangzhi Yan
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China
| | - Shuangqing Chen
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 211103, China.
| | - Xi Jiang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jian Zheng
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | | |
Collapse
|
16
|
Zhuang J, Tian J, Xiong X, Li T, Chen Z, Chen R, Chen J, Li X. Associating brain imaging phenotypes and genetic risk factors via a hypergraph based netNMF method. Front Aging Neurosci 2023; 15:1052783. [PMID: 36936501 PMCID: PMC10017840 DOI: 10.3389/fnagi.2023.1052783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Abstract Alzheimer's disease (AD) is a severe neurodegenerative disease for which there is currently no effective treatment. Mild cognitive impairment (MCI) is an early disease that may progress to AD. The effective diagnosis of AD and MCI in the early stage has important clinical significance. Methods To this end, this paper proposed a hypergraph-based netNMF (HG-netNMF) algorithm for integrating structural magnetic resonance imaging (sMRI) of AD and MCI with corresponding gene expression profiles. Results Hypergraph regularization assumes that regions of interest (ROIs) and genes were located on a non-linear low-dimensional manifold and can capture the inherent prevalence of two modalities of data and mined high-order correlation features of the two data. Further, this paper used the HG-netNMF algorithm to construct a brain structure connection network and a protein interaction network (PPI) with potential role relationships, mine the risk (ROI) and key genes of both, and conduct a series of bioinformatics analyses. Conclusion Finally, this paper used the risk ROI and key genes of the AD and MCI groups to construct diagnostic models. The AUC of the AD group and MCI group were 0.8 and 0.797, respectively.
Collapse
Affiliation(s)
- Junli Zhuang
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinping Tian
- Faculty of Medicine, Jianghan University, Wuhan, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xiaoxing Xiong,
| | - Taihan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Taihan Li,
| | - Zhengwei Chen
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Rong Chen
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jun Chen
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xiang Li
- School of Health, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Clark C, Rabl M, Dayon L, Popp J. The promise of multi-omics approaches to discover biological alterations with clinical relevance in Alzheimer's disease. Front Aging Neurosci 2022; 14:1065904. [PMID: 36570537 PMCID: PMC9768448 DOI: 10.3389/fnagi.2022.1065904] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Beyond the core features of Alzheimer's disease (AD) pathology, i.e. amyloid pathology, tau-related neurodegeneration and microglia response, multiple other molecular alterations and pathway dysregulations have been observed in AD. Their inter-individual variations, complex interactions and relevance for clinical manifestation and disease progression remain poorly understood, however. Heterogeneity at both pathophysiological and clinical levels complicates diagnosis, prognosis, treatment and drug design and testing. High-throughput "omics" comprise unbiased and untargeted data-driven methods which allow the exploration of a wide spectrum of disease-related changes at different endophenotype levels without focussing a priori on specific molecular pathways or molecules. Crucially, new methodological and statistical advances now allow for the integrative analysis of data resulting from multiple and different omics methods. These multi-omics approaches offer the unique advantage of providing a more comprehensive characterisation of the AD endophenotype and to capture molecular signatures and interactions spanning various biological levels. These new insights can then help decipher disease mechanisms more deeply. In this review, we describe the different multi-omics tools and approaches currently available and how they have been applied in AD research so far. We discuss how multi-omics can be used to explore molecular alterations related to core features of the AD pathologies and how they interact with comorbid pathological alterations. We further discuss whether the identified pathophysiological changes are relevant for the clinical manifestation of AD, in terms of both cognitive impairment and neuropsychiatric symptoms, and for clinical disease progression over time. Finally, we address the opportunities for multi-omics approaches to help discover novel biomarkers for diagnosis and monitoring of relevant pathophysiological processes, along with personalised intervention strategies in AD.
Collapse
Affiliation(s)
- Christopher Clark
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zürich, Switzerland,Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,*Correspondence: Christopher Clark,
| | - Miriam Rabl
- Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,University of Lausanne, Lausanne, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julius Popp
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zürich, Zürich, Switzerland,Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland,Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
18
|
Bi XA, Mao Y, Luo S, Wu H, Zhang L, Luo X, Xu L. A novel generation adversarial network framework with characteristics aggregation and diffusion for brain disease classification and feature selection. Brief Bioinform 2022; 23:6762742. [PMID: 36259367 DOI: 10.1093/bib/bbac454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022] Open
Abstract
Imaging genetics provides unique insights into the pathological studies of complex brain diseases by integrating the characteristics of multi-level medical data. However, most current imaging genetics research performs incomplete data fusion. Also, there is a lack of effective deep learning methods to analyze neuroimaging and genetic data jointly. Therefore, this paper first constructs the brain region-gene networks to intuitively represent the association pattern of pathogenetic factors. Second, a novel feature information aggregation model is constructed to accurately describe the information aggregation process among brain region nodes and gene nodes. Finally, a deep learning method called feature information aggregation and diffusion generative adversarial network (FIAD-GAN) is proposed to efficiently classify samples and select features. We focus on improving the generator with the proposed convolution and deconvolution operations, with which the interpretability of the deep learning framework has been dramatically improved. The experimental results indicate that FIAD-GAN can not only achieve superior results in various disease classification tasks but also extract brain regions and genes closely related to AD. This work provides a novel method for intelligent clinical decisions. The relevant biomedical discoveries provide a reliable reference and technical basis for the clinical diagnosis, treatment and pathological analysis of disease.
Collapse
Affiliation(s)
- Xia-An Bi
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, and College of Information Science and Engineering in Hunan Normal University, Changsha, P.R. China
| | - Yuhua Mao
- Department of Computing, School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Sheng Luo
- Department of Computing, School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Hao Wu
- Department of Computing, School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Lixia Zhang
- School of Information Science and Engineering, Hunan Normal University, Changsha, P.R. China
| | - Xun Luo
- College of Information Science and Engineering in Hunan Normal University, Changsha, P.R. China
| | - Luyun Xu
- College of Business in Hunan Normal University, Changsha, P.R. China
| |
Collapse
|
19
|
Song P, Wang Y, Yuan X, Wang S, Song X. Exploring Brain Structural and Functional Biomarkers in Schizophrenia via Brain-Network-Constrained Multi-View SCCA. Front Neurosci 2022; 16:879703. [PMID: 35794950 PMCID: PMC9252525 DOI: 10.3389/fnins.2022.879703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have proved that dynamic regional measures extracted from the resting-state functional magnetic resonance imaging, such as the dynamic fractional amplitude of low-frequency fluctuation (d-fALFF), could provide a great insight into brain dynamic characteristics of the schizophrenia. However, the unimodal feature is limited for delineating the complex patterns of brain deficits. Thus, functional and structural imaging data are usually analyzed together for uncovering the neural mechanism of schizophrenia. Investigation of neural function-structure coupling enables to find the potential biomarkers and further helps to understand the biological basis of schizophrenia. Here, a brain-network-constrained multi-view sparse canonical correlation analysis (BN-MSCCA) was proposed to explore the intrinsic associations between brain structure and dynamic brain function. Specifically, the d-fALFF was first acquired based on the sliding window method, whereas the gray matter map was computed based on voxel-based morphometry analysis. Then, the region-of-interest (ROI)-based features were extracted and further selected by performing the multi-view sparse canonical correlation analysis jointly with the diagnosis information. Moreover, the brain-network-based structural constraint was introduced to prompt the detected biomarkers more interpretable. The experiments were conducted on 191 patients with schizophrenia and 191 matched healthy controls. Results showed that the BN-MSCCA could identify the critical ROIs with more sparse canonical weight patterns, which are corresponding to the specific brain networks. These are biologically meaningful findings and could be treated as the potential biomarkers. The proposed method also obtained a higher canonical correlation coefficient for the testing data, which is more consistent with the results on training data, demonstrating its promising capability for the association identification. To demonstrate the effectiveness of the potential clinical applications, the detected biomarkers were further analyzed on a schizophrenia-control classification task and a correlation analysis task. The experimental results showed that our method had a superior performance with a 5-8% increment in accuracy and 6-10% improvement in area under the curve. Furthermore, two of the top-ranked biomarkers were significantly negatively correlated with the positive symptom score of Positive and Negative Syndrome Scale (PANSS). Overall, the proposed method could find the association between brain structure and dynamic brain function, and also help to identify the biological meaningful biomarkers of schizophrenia. The findings enable our further understanding of this disease.
Collapse
Affiliation(s)
- Peilun Song
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yaping Wang
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
| | - Shuying Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Xin Y, Sheng J, Miao M, Wang L, Yang Z, Huang H. A review ofimaging genetics in Alzheimer's disease. J Clin Neurosci 2022; 100:155-163. [PMID: 35487021 DOI: 10.1016/j.jocn.2022.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/01/2022] [Accepted: 04/15/2022] [Indexed: 01/18/2023]
Abstract
Determining the association between genetic variation and phenotype is a key step to study the mechanism of Alzheimer's disease (AD), laying the foundation for studying drug therapies and biomarkers. AD is the most common type of dementia in the aged population. At present, three early-onset AD genes (APP, PSEN1, PSEN2) and one late-onset AD susceptibility gene apolipoprotein E (APOE) have been determined. However, the pathogenesis of AD remains unknown. Imaging genetics, an emerging interdisciplinary field, is able to reveal the complex mechanisms from the genetic level to human cognition and mental disorders via macroscopic intermediates. This paper reviews methods of establishing genotype-phenotype to explore correlations, including sparse canonical correlation analysis, sparse reduced rank regression, sparse partial least squares and so on. We found that most research work did poorly in supervised learning and exploring the nonlinear relationship between SNP-QT.
Collapse
Affiliation(s)
- Yu Xin
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Jinhua Sheng
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China.
| | - Miao Miao
- Beijing Hospital, Beijing 100730, China; National Center of Gerontology, Beijing 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Luyun Wang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China; Hangzhou Vocational & Technical College, Hangzhou, Zhejiang 310018, China
| | - Ze Yang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - He Huang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
21
|
Zhang J, Wang H, Zhao Y, Guo L, Du L. Identification of multimodal brain imaging association via a parameter decomposition based sparse multi-view canonical correlation analysis method. BMC Bioinformatics 2022; 23:128. [PMID: 35413798 PMCID: PMC9006414 DOI: 10.1186/s12859-022-04669-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND With the development of noninvasive imaging technology, collecting different imaging measurements of the same brain has become more and more easy. These multimodal imaging data carry complementary information of the same brain, with both specific and shared information being intertwined. Within these multimodal data, it is essential to discriminate the specific information from the shared information since it is of benefit to comprehensively characterize brain diseases. While most existing methods are unqualified, in this paper, we propose a parameter decomposition based sparse multi-view canonical correlation analysis (PDSMCCA) method. PDSMCCA could identify both modality-shared and -specific information of multimodal data, leading to an in-depth understanding of complex pathology of brain disease. RESULTS Compared with the SMCCA method, our method obtains higher correlation coefficients and better canonical weights on both synthetic data and real neuroimaging data. This indicates that, coupled with modality-shared and -specific feature selection, PDSMCCA improves the multi-view association identification and shows meaningful feature selection capability with desirable interpretation. CONCLUSIONS The novel PDSMCCA confirms that the parameter decomposition is a suitable strategy to identify both modality-shared and -specific imaging features. The multimodal association and the diverse information of multimodal imaging data enable us to better understand the brain disease such as Alzheimer's disease.
Collapse
Affiliation(s)
- Jin Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Huiai Wang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Ying Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Lei Du
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
| | | |
Collapse
|
22
|
Wang W, Kong W, Wang S, Wei K. Detecting Biomarkers of Alzheimer's Disease Based on Multi-constrained Uncertainty-Aware Adaptive Sparse Multi-view Canonical Correlation Analysis. J Mol Neurosci 2022; 72:841-865. [PMID: 35080765 DOI: 10.1007/s12031-021-01963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/29/2021] [Indexed: 12/01/2022]
Abstract
Image genetics mainly explores the pathogenesis of Alzheimer's disease (AD) by studying the relationship between genetic data (such as SNP, gene expression data, and DNA methylation) and imaging data (such as structural MRI (sMRI), fMRI, and PET). Most of the existing research on brain imaging genomics uses two-way or three-way bi-multivariate methods to explore the correlation analysis between genes and brain imaging. However, many of these methods are still affected by the gradient domination or cannot take into account the effect of feature redundancy on the results, so that the typical correlation coefficient and program running speed are not significantly improved. In order to solve the above problems, this paper proposes a multi-constrained uncertainty-aware adaptive sparse multi-view canonical correlation analysis method (MC-unAdaSMCCA) to explore associations among SNPs, gene expression data, and sMRI; that is, based on traditional unAdaSMCCA, orthogonal constraints are imposed on the weights of the three data features through linear programming, which can reduce the redundancy of feature weights to improve the correlation between the data and reduce the complexity of the algorithm to significantly speed up the running speed of the program. Three adaptive sparse multi-view canonical correlation analysis methods are used as benchmarks to evaluate the difference between real neuroimaging data and synthetic data. Compared with the other three methods, our proposed method has obtained better or comparable typical correlation coefficients and typical weights. Moreover, the following experimental results show that the MC-unAdaSMCCA method cannot only identify biomarkers related to AD and mild cognitive impairment (MCI), but also has a strong ability to resist noise and process high-dimensional data. Therefore, our proposed method provides a reliable approach to multi-modal imaging genetic researches.
Collapse
Affiliation(s)
- Wenbo Wang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, People's Republic of China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, People's Republic of China.
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, People's Republic of China
| | - Kai Wei
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai, 201306, People's Republic of China
| |
Collapse
|
23
|
Integrating multiple genomic imaging data for the study of lung metastasis in sarcomas using multi-dimensional constrained joint non-negative matrix factorization. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.06.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|