1
|
Marinov Z, Jager PF, Egger J, Kleesiek J, Stiefelhagen R. Deep Interactive Segmentation of Medical Images: A Systematic Review and Taxonomy. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:10998-11018. [PMID: 39213271 DOI: 10.1109/tpami.2024.3452629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Interactive segmentation is a crucial research area in medical image analysis aiming to boost the efficiency of costly annotations by incorporating human feedback. This feedback takes the form of clicks, scribbles, or masks and allows for iterative refinement of the model output so as to efficiently guide the system towards the desired behavior. In recent years, deep learning-based approaches have propelled results to a new level causing a rapid growth in the field with 121 methods proposed in the medical imaging domain alone. In this review, we provide a structured overview of this emerging field featuring a comprehensive taxonomy, a systematic review of existing methods, and an in-depth analysis of current practices. Based on these contributions, we discuss the challenges and opportunities in the field. For instance, we find that there is a severe lack of comparison across methods which needs to be tackled by standardized baselines and benchmarks.
Collapse
|
2
|
Farooq H, Zafar Z, Saadat A, Khan TM, Iqbal S, Razzak I. LSSF-Net: Lightweight segmentation with self-awareness, spatial attention, and focal modulation. Artif Intell Med 2024; 158:103012. [PMID: 39547075 DOI: 10.1016/j.artmed.2024.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/02/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
Accurate segmentation of skin lesions within dermoscopic images plays a crucial role in the timely identification of skin cancer for computer-aided diagnosis on mobile platforms. However, varying shapes of the lesions, lack of defined edges, and the presence of obstructions such as hair strands and marker colours make this challenge more complex. Additionally, skin lesions often exhibit subtle variations in texture and colour that are difficult to differentiate from surrounding healthy skin, necessitating models that can capture both fine-grained details and broader contextual information. Currently, melanoma segmentation models are commonly based on fully connected networks and U-Nets. However, these models often struggle with capturing the complex and varied characteristics of skin lesions, such as the presence of indistinct boundaries and diverse lesion appearances, which can lead to suboptimal segmentation performance. To address these challenges, we propose a novel lightweight network specifically designed for skin lesion segmentation utilising mobile devices, featuring a minimal number of learnable parameters (only 0.8 million). This network comprises an encoder-decoder architecture that incorporates conformer-based focal modulation attention, self-aware local and global spatial attention, and split channel-shuffle. The efficacy of our model has been evaluated on four well-established benchmark datasets for skin lesion segmentation: ISIC 2016, ISIC 2017, ISIC 2018, and PH2. Empirical findings substantiate its state-of-the-art performance, notably reflected in a high Jaccard index.
Collapse
Affiliation(s)
- Hamza Farooq
- School of Electrical Engineering and Computer Science (SEECS), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan
| | - Zuhair Zafar
- School of Electrical Engineering and Computer Science (SEECS), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan
| | - Ahsan Saadat
- School of Electrical Engineering and Computer Science (SEECS), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; Sydney City Campus, Western Sydney University, Sydney, Australia
| | - Tariq M Khan
- School of Computer Science and Engineering, UNSW, Sydney, Australia
| | - Shahzaib Iqbal
- Department of Computing, Abasyn University Islamabad Campus, Pakistan.
| | - Imran Razzak
- School of Computer Science and Engineering, UNSW, Sydney, Australia
| |
Collapse
|
3
|
Din S, Mourad O, Serpedin E. LSCS-Net: A lightweight skin cancer segmentation network with densely connected multi-rate atrous convolution. Comput Biol Med 2024; 173:108303. [PMID: 38547653 DOI: 10.1016/j.compbiomed.2024.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/18/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
The rising occurrence and notable public health consequences of skin cancer, especially of the most challenging form known as melanoma, have created an urgent demand for more advanced approaches to disease management. The integration of modern computer vision methods into clinical procedures offers the potential for enhancing the detection of skin cancer . The UNet model has gained prominence as a valuable tool for this objective, continuously evolving to tackle the difficulties associated with the inherent diversity of dermatological images. These challenges stem from diverse medical origins and are further complicated by variations in lighting, patient characteristics, and hair density. In this work, we present an innovative end-to-end trainable network crafted for the segmentation of skin cancer . This network comprises an encoder-decoder architecture, a novel feature extraction block, and a densely connected multi-rate Atrous convolution block. We evaluated the performance of the proposed lightweight skin cancer segmentation network (LSCS-Net) on three widely used benchmark datasets for skin lesion segmentation: ISIC 2016, ISIC 2017, and ISIC 2018. The generalization capabilities of LSCS-Net are testified by the excellent performance on breast cancer and thyroid nodule segmentation datasets. The empirical findings confirm that LSCS-net attains state-of-the-art results, as demonstrated by a significantly elevated Jaccard index.
Collapse
Affiliation(s)
- Sadia Din
- Electrical and Computer Engineering Program, Texas A&M University, Doha, Qatar.
| | | | - Erchin Serpedin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Yan W, Chiu B, Shen Z, Yang Q, Syer T, Min Z, Punwani S, Emberton M, Atkinson D, Barratt DC, Hu Y. Combiner and HyperCombiner networks: Rules to combine multimodality MR images for prostate cancer localisation. Med Image Anal 2024; 91:103030. [PMID: 37995627 DOI: 10.1016/j.media.2023.103030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
One of the distinct characteristics of radiologists reading multiparametric prostate MR scans, using reporting systems like PI-RADS v2.1, is to score individual types of MR modalities, including T2-weighted, diffusion-weighted, and dynamic contrast-enhanced, and then combine these image-modality-specific scores using standardised decision rules to predict the likelihood of clinically significant cancer. This work aims to demonstrate that it is feasible for low-dimensional parametric models to model such decision rules in the proposed Combiner networks, without compromising the accuracy of predicting radiologic labels. First, we demonstrate that either a linear mixture model or a nonlinear stacking model is sufficient to model PI-RADS decision rules for localising prostate cancer. Second, parameters of these combining models are proposed as hyperparameters, weighing independent representations of individual image modalities in the Combiner network training, as opposed to end-to-end modality ensemble. A HyperCombiner network is developed to train a single image segmentation network that can be conditioned on these hyperparameters during inference for much-improved efficiency. Experimental results based on 751 cases from 651 patients compare the proposed rule-modelling approaches with other commonly-adopted end-to-end networks, in this downstream application of automating radiologist labelling on multiparametric MR. By acquiring and interpreting the modality combining rules, specifically the linear-weights or odds ratios associated with individual image modalities, three clinical applications are quantitatively presented and contextualised in the prostate cancer segmentation application, including modality availability assessment, importance quantification and rule discovery.
Collapse
Affiliation(s)
- Wen Yan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong China; Centre for Medical Image Computing; Department of Medical Physics & Biomedical Engineering; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Gower St, WC1E 6BT, London, UK.
| | - Bernard Chiu
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong China; Department of Physics & Computer Science, Wilfrid Laurier University, 75 University Avenue West Waterloo, Ontario N2L 3C5, Canada.
| | - Ziyi Shen
- Centre for Medical Image Computing; Department of Medical Physics & Biomedical Engineering; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Gower St, WC1E 6BT, London, UK.
| | - Qianye Yang
- Centre for Medical Image Computing; Department of Medical Physics & Biomedical Engineering; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Gower St, WC1E 6BT, London, UK.
| | - Tom Syer
- Centre for Medical Imaging, Division of Medicine, University College London, London W1 W 7TS, UK.
| | - Zhe Min
- Centre for Medical Image Computing; Department of Medical Physics & Biomedical Engineering; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Gower St, WC1E 6BT, London, UK.
| | - Shonit Punwani
- Centre for Medical Imaging, Division of Medicine, University College London, London W1 W 7TS, UK.
| | - Mark Emberton
- Division of Surgery & Interventional Science, University College London, Gower St, WC1E 6BT, London, UK.
| | - David Atkinson
- Centre for Medical Imaging, Division of Medicine, University College London, London W1 W 7TS, UK.
| | - Dean C Barratt
- Centre for Medical Image Computing; Department of Medical Physics & Biomedical Engineering; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Gower St, WC1E 6BT, London, UK.
| | - Yipeng Hu
- Centre for Medical Image Computing; Department of Medical Physics & Biomedical Engineering; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Gower St, WC1E 6BT, London, UK.
| |
Collapse
|
5
|
Mirikharaji Z, Abhishek K, Bissoto A, Barata C, Avila S, Valle E, Celebi ME, Hamarneh G. A survey on deep learning for skin lesion segmentation. Med Image Anal 2023; 88:102863. [PMID: 37343323 DOI: 10.1016/j.media.2023.102863] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/01/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online3.
Collapse
Affiliation(s)
- Zahra Mirikharaji
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby V5A 1S6, Canada
| | - Kumar Abhishek
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby V5A 1S6, Canada
| | - Alceu Bissoto
- RECOD.ai Lab, Institute of Computing, University of Campinas, Av. Albert Einstein 1251, Campinas 13083-852, Brazil
| | - Catarina Barata
- Institute for Systems and Robotics, Instituto Superior Técnico, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Sandra Avila
- RECOD.ai Lab, Institute of Computing, University of Campinas, Av. Albert Einstein 1251, Campinas 13083-852, Brazil
| | - Eduardo Valle
- RECOD.ai Lab, School of Electrical and Computing Engineering, University of Campinas, Av. Albert Einstein 400, Campinas 13083-952, Brazil
| | - M Emre Celebi
- Department of Computer Science and Engineering, University of Central Arkansas, 201 Donaghey Ave., Conway, AR 72035, USA.
| | - Ghassan Hamarneh
- Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby V5A 1S6, Canada.
| |
Collapse
|
6
|
Bi L, Celebi ME, Iyatomi H, Fernandez-Penas P, Kim J. Image analysis in advanced skin imaging technology. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 238:107599. [PMID: 37244232 DOI: 10.1016/j.cmpb.2023.107599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Lei Bi
- Institute of Translational Medicine, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Computer Science, University of Sydney, NSW, Australia.
| | - M Emre Celebi
- Department of Computer Science and Engineering, University of Central Arkansas, Conway, AR, USA
| | - Hitoshi Iyatomi
- Faculty of Science and Engineering, Hosei University, Tokyo, Japan
| | - Pablo Fernandez-Penas
- Department of Dermatology, Westmead Hospital, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Jinman Kim
- School of Computer Science, University of Sydney, NSW, Australia
| |
Collapse
|
7
|
Zhou X, Tong T, Zhong Z, Fan H, Li Z. Saliency-CCE: Exploiting colour contextual extractor and saliency-based biomedical image segmentation. Comput Biol Med 2023; 154:106551. [PMID: 36716685 DOI: 10.1016/j.compbiomed.2023.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Biomedical image segmentation is one critical component in computer-aided system diagnosis. However, various non-automatic segmentation methods are usually designed to segment target objects with single-task driven, ignoring the potential contribution of multi-task, such as the salient object detection (SOD) task and the image segmentation task. In this paper, we propose a novel dual-task framework for white blood cell (WBC) and skin lesion (SL) saliency detection and segmentation in biomedical images, called Saliency-CCE. Saliency-CCE consists of a preprocessing of hair removal for skin lesions images, a novel colour contextual extractor (CCE) module for the SOD task and an improved adaptive threshold (AT) paradigm for the image segmentation task. In the SOD task, we perform the CCE module to extract hand-crafted features through a novel colour channel volume (CCV) block and a novel colour activation mapping (CAM) block. We first exploit the CCV block to generate a target object's region of interest (ROI). After that, we employ the CAM block to yield a refined salient map as the final salient map from the extracted ROI. We propose a novel adaptive threshold (AT) strategy in the segmentation task to automatically segment the WBC and SL from the final salient map. We evaluate our proposed Saliency-CCE on the ISIC-2016, the ISIC-2017, and the SCISC datasets, which outperform representative state-of-the-art SOD and biomedical image segmentation approaches. Our code is available at https://github.com/zxg3017/Saliency-CCE.
Collapse
Affiliation(s)
- Xiaogen Zhou
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, P.R. China; College of Physics and Information Engineering, Fuzhou University, Fuzhou, P.R. China
| | - Tong Tong
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, P.R. China
| | - Zhixiong Zhong
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, P.R. China
| | - Haoyi Fan
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, P.R. China
| | - Zuoyong Li
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, P.R. China.
| |
Collapse
|
8
|
Wang Y, Su J, Xu Q, Zhong Y. A Collaborative Learning Model for Skin Lesion Segmentation and Classification. Diagnostics (Basel) 2023; 13:diagnostics13050912. [PMID: 36900056 PMCID: PMC10001355 DOI: 10.3390/diagnostics13050912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The automatic segmentation and classification of skin lesions are two essential tasks in computer-aided skin cancer diagnosis. Segmentation aims to detect the location and boundary of the skin lesion area, while classification is used to evaluate the type of skin lesion. The location and contour information of lesions provided by segmentation is essential for the classification of skin lesions, while the skin disease classification helps generate target localization maps to assist the segmentation task. Although the segmentation and classification are studied independently in most cases, we find meaningful information can be explored using the correlation of dermatological segmentation and classification tasks, especially when the sample data are insufficient. In this paper, we propose a collaborative learning deep convolutional neural networks (CL-DCNN) model based on the teacher-student learning method for dermatological segmentation and classification. To generate high-quality pseudo-labels, we provide a self-training method. The segmentation network is selectively retrained through classification network screening pseudo-labels. Specially, we obtain high-quality pseudo-labels for the segmentation network by providing a reliability measure method. We also employ class activation maps to improve the location ability of the segmentation network. Furthermore, we provide the lesion contour information by using the lesion segmentation masks to improve the recognition ability of the classification network. Experiments are carried on the ISIC 2017 and ISIC Archive datasets. The CL-DCNN model achieved a Jaccard of 79.1% on the skin lesion segmentation task and an average AUC of 93.7% on the skin disease classification task, which is superior to the advanced skin lesion segmentation methods and classification methods.
Collapse
Affiliation(s)
- Ying Wang
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
| | - Jie Su
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
- Correspondence: ; Tel.: +86-15054125550
| | - Qiuyu Xu
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
- Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
| | - Yixin Zhong
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
- Artificial Intelligence Research Institute, University of Jinan, Jinan 250022, China
| |
Collapse
|
9
|
Feng R, Zhuo L, Li X, Yin H, Wang Z. BLA-Net:Boundary learning assisted network for skin lesion segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107190. [PMID: 36288686 DOI: 10.1016/j.cmpb.2022.107190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Automatic skin lesion segmentation plays an important role in computer-aided diagnosis of skin diseases. However, current segmentation networks cannot accurately detect the boundaries of the skin lesion areas. METHODS In this paper, a boundary learning assisted network for skin lesion segmentation is proposed, namely BLA-Net, which adopts ResNet34 as backbone network under an encoder-decoder framework. The overall architecture is divided into two key components: Primary Segmentation Network (PSNet) and Auxiliary Boundary Learning Network (ABLNet). PSNet is to locate the skin lesion areas. Dynamic Deformable Convolution is introduced into the lower layer of the encoder, so that the network can effectively deal with complex skin lesion objects. And a Global Context Information Extraction Module is proposed and embedded into the high layer of the encoder to capture multi-receptive field and multi-scale global context features. ABLNet is to finely detect the boundaries of skin lesion area based on the low-level features of the encoder, in which an object regional attention mechanism is proposed to enhance the features of lesion object area and suppress those of irrelevant regions. ABLNet can assist the PSNet to realize accurate skin lesion segmentation. RESULTS We verified the segmentation performance of the proposed method on the two public dermoscopy datasets, namely ISBI 2016 and ISIC 2018. The experimental results show that our proposed method can achieve the Jaccard Index of 86.6%, 84.8% and the Dice Coefficient of 92.4%, 91.2% on ISBI 2016 and ISIC 2018 datasets, respectively. CONCLUSIONS Compared with existing methods, the proposed method can achieve the state-of-the-arts segmentation accuracy with less model parameters, which can assist dermatologists in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Ruiqi Feng
- Faculty of Information Technology, Beijing University of Technology, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, China
| | - Li Zhuo
- Faculty of Information Technology, Beijing University of Technology, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, China.
| | - Xiaoguang Li
- Faculty of Information Technology, Beijing University of Technology, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, China
| | - Hongxia Yin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, China.
| |
Collapse
|
10
|
Zhou X, Nie X, Li Z, Lin X, Xue E, Wang L, Lan J, Chen G, Du M, Tong T. H-Net: A dual-decoder enhanced FCNN for automated biomedical image diagnosis. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|