1
|
Jadhav K, Abhang A, Kole EB, Gadade D, Dusane A, Iyer A, Sharma A, Rout SK, Gholap AD, Naik J, Verma RK, Rojekar S. Peptide-Drug Conjugates as Next-Generation Therapeutics: Exploring the Potential and Clinical Progress. Bioengineering (Basel) 2025; 12:481. [PMID: 40428099 PMCID: PMC12108627 DOI: 10.3390/bioengineering12050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Peptide-drug conjugates (PDCs) have emerged as a next-generation therapeutic platform, combining the target specificity of peptides with the pharmacological potency of small-molecule drugs. As an evolution beyond antibody-drug conjugates (ADCs), PDCs offer distinct advantages, including enhanced cellular permeability, improved drug selectivity, and versatile design flexibility. This review provides a comprehensive analysis of the fundamental components of PDCs, including homing peptide selection, linker engineering, and payload optimization, alongside strategies to address their inherent challenges, such as stability, bioactivity, and clinical translation barriers. Therapeutic applications of PDCs span oncology, infectious diseases, metabolic disorders, and emerging areas like COVID-19, with several conjugates advancing in clinical trials and achieving regulatory milestones. Innovations, including bicyclic peptides, supramolecular architectures, and novel linker technologies, are explored as promising avenues to enhance PDC design. Additionally, this review examines the clinical trajectory of PDCs, emphasizing their therapeutic potential and highlighting ongoing trials that exemplify their efficacy. By addressing limitations and leveraging emerging advancements, PDCs hold immense promise as targeted therapeutics capable of addressing complex disease states and driving progress in precision medicine.
Collapse
Affiliation(s)
- Krishna Jadhav
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali 140306, Punjab, India; (K.J.); (R.K.V.)
| | - Ashwin Abhang
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, USA;
| | - Eknath B. Kole
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India; (E.B.K.); (J.N.)
| | - Dipak Gadade
- Department of Pharmaceutical Sciences, Delhi Skill and Entrepreneurship University, Dwarka Campus, Sector 9 Dwarka, New Delhi 110077, Delhi, India;
| | - Apurva Dusane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA;
| | - Aditya Iyer
- Biopharmaceutics Department, Biocon Bristol-Myers Squibb R&D Center (BBRC), Bangalore 560099, Karnataka, India;
| | | | - Saroj Kumar Rout
- Research and Development, LNK International Inc., New York, NY 11788, USA;
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India;
| | - Jitendra Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India; (E.B.K.); (J.N.)
| | - Rahul K. Verma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali 140306, Punjab, India; (K.J.); (R.K.V.)
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|