1
|
Capellini K, Gasparotti E, Castiglione V, Palmieri C, Berti S, Rizza A, Celi S. Computational Fluid Dynamics-Driven Comparison of Endovascular Treatment Strategies for Penetrating Aortic Ulcer. J Clin Med 2025; 14:1290. [PMID: 40004819 PMCID: PMC11856155 DOI: 10.3390/jcm14041290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Penetrating aortic ulcer (PAU) is an acute aortic syndrome characterized by a high rupture risk. There are several PAU-treatment procedures indicated for the management of this pathology associated with different effects on vessel morphology and hemodynamics. A deep evaluation of the different types of treatment may be helpful in decision making. Computational Fluid Dynamics (CFD) is a powerful tool for detailed inspection of cardiovascular diseases. The aim of this work was to implement a comparative analysis based on CFD evaluation of the effects of two type of PAU treatments. Methods: Thoracic endovascular aortic repair (TEVAR) with a left subclavian artery (LSA) branched aortic endograft (SBSG) and a hybrid approach including TEVAR and carotid-LSA bypass were considered. Aortic anatomical models were created from computed tomography (CT) images acquired before and after PAU treatment with SBSG for three patients. Starting from these models, a new aortic geometry corresponding to the outcome of the hybrid strategy was generated. Morphological analysis and CFD simulations were carried out for all aortic models to evaluate LSA outflow for the same predefined boundary conditions. Results: Reductions in LSA diameter were found between aortic models before and after the SBSG (18.2%, 20.8%, and 12.4% for CASE 1, CASE 2, and CASE 3, respectively). The flow rate at LSA changed between pre-configuration and aortic configuration after the PAU treatments: an averaged decrement of 1.08% and 7.5% was found for SBSG and the hybrid approach, respectively. The larger increase in pressure drop between the aortic arch and the LSA extremity was shown in the hybrid approach for all cases. Conclusions: CFD simulations suggest that SBSG preserves LSA perfusion more than a hybrid strategy and has less impact on thoracic aorta hemodynamics.
Collapse
Affiliation(s)
- Katia Capellini
- BioCardioLab, U.O.C. Bioingegneria, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (K.C.); (E.G.)
| | - Emanuele Gasparotti
- BioCardioLab, U.O.C. Bioingegneria, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (K.C.); (E.G.)
| | - Vincenzo Castiglione
- U.O.C. Cardiologia e Medicina Cardiovascolare, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy;
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Cataldo Palmieri
- U.O.C. Cardiologia Diagnostica e Interventistica, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (C.P.); (S.B.); (A.R.)
| | - Sergio Berti
- U.O.C. Cardiologia Diagnostica e Interventistica, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (C.P.); (S.B.); (A.R.)
| | - Antonio Rizza
- U.O.C. Cardiologia Diagnostica e Interventistica, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (C.P.); (S.B.); (A.R.)
| | - Simona Celi
- BioCardioLab, U.O.C. Bioingegneria, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (K.C.); (E.G.)
| |
Collapse
|
2
|
Silva MLFD, Costa MCB, Gonçalves SDF, Huebner R, Navarro TP. Numerical analysis of blood flow in a branched modular stent-graft for aneurysms covering all zones of the aortic arch. Biomech Model Mechanobiol 2024; 23:2177-2191. [PMID: 39304550 DOI: 10.1007/s10237-024-01887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Due to the anatomical complexity of the aortic arch for the development of stent-grafts for total repair, this region remains without a validated and routinely used endovascular option. In this work, a modular stent-graft for aneurysms that covers all aortic arch zones, proposed by us and previously structurally evaluated, was evaluated from the point of view of haemodynamics using fluid-structural numerical simulations. Blood was assumed to be non-Newtonian shear-thinning using the Carreau model, and the arterial wall was assumed to be anisotropic hyperelastic using the Holzapfel model. Nitinol and expanded polytetrafluoroethylene (PTFE-e) were used as materials for the stents and the graft, respectively. Nitinol was modelled as a superelastic material with shape memory by the Auricchio model, and PTFE-e was modelled as an isotropic linear elastic material. To validate the numerical model, a silicone model representative of the aneurysmal aorta was subjected to tests on an experimental bench representative of the circulatory system. The numerical results showed that the stent-graft restored flow behaviour, making it less oscillatory, but increasing the strain rate, turbulence kinetic energy, and viscosity compared to the pathological case. Taking the mean of the entire cycle, the increase in turbulence kinetic energy was 198.82% in the brachiocephalic trunk, 144.63% in the left common carotid artery and 284.03% in the left subclavian artery after stent-graft implantation. Based on wall shear stress parameters, it was possible to identify that the internal branches of the stent-graft and the stent-graft fixation sites in the artery were the most favourable regions for the deposition and accumulation of thrombus. In these regions, the oscillating shear index reached the maximum value of 0.5 and the time-averaged wall shear stress was close to zero, which led the relative residence time to reach values above 15 Pa-1. The stent-graft was able to preserve flow in the supra-aortic branches.
Collapse
Affiliation(s)
- Mário Luis Ferreira da Silva
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Matheus Carvalho Barbosa Costa
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Saulo de Freitas Gonçalves
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rudolf Huebner
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Túlio Pinho Navarro
- Department of Surgery, Faculty of Medicine, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| |
Collapse
|
3
|
Wang K, Armour CH, Guo B, Dong Z, Xu XY. A new method for scaling inlet flow waveform in hemodynamic analysis of aortic dissection. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3855. [PMID: 39051141 DOI: 10.1002/cnm.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Computational fluid dynamics (CFD) simulations have shown great potentials in cardiovascular disease diagnosis and postoperative assessment. Patient-specific and well-tuned boundary conditions are key to obtaining accurate and reliable hemodynamic results. However, CFD simulations are usually performed under non-patient-specific flow conditions due to the absence of in vivo flow and pressure measurements. This study proposes a new method to overcome this challenge by tuning inlet boundary conditions using data extracted from electrocardiogram (ECG). Five patient-specific geometric models of type B aortic dissection were reconstructed from computed tomography (CT) images. Other available data included stoke volume (SV), ECG, and 4D-flow magnetic resonance imaging (MRI). ECG waveforms were processed to extract patient-specific systole to diastole ratio (SDR). Inlet boundary conditions were defined based on a generic aortic flow waveform tuned using (1) SV only, and (2) with ECG and SV (ECG + SV). 4D-flow MRI derived inlet boundary conditions were also used in patient-specific simulations to provide the gold standard for comparison and validation. Simulations using inlet flow waveform tuned with ECG + SV not only successfully reproduced flow distributions in the descending aorta but also provided accurate prediction of time-averaged wall shear stress (TAWSS) in the primary entry tear (PET) and abdominal regions, as well as maximum pressure difference, ∆Pmax, from the aortic root to the distal false lumen. Compared with simulations with inlet waveform tuned with SV alone, using ECG + SV in the tuning method significantly reduced the error in false lumen ejection fraction at the PET (from 149.1% to 6.2%), reduced errors in TAWSS at the PET (from 54.1% to 5.7%) and in the abdominal region (from 61.3% to 11.1%), and improved ∆Pmax prediction (from 283.1% to 18.8%) However, neither of these inlet waveforms could be used for accurate prediction of TAWSS in the ascending aorta. This study demonstrates the importance of SDR in tailoring inlet flow waveforms for patient-specific hemodynamic simulations. A well-tuned flow waveform is essential for ensuring that the simulation results are patient-specific, thereby enhancing the confidence and fidelity of computational tools in future clinical applications.
Collapse
Affiliation(s)
- Kaihong Wang
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Chlöe H Armour
- Department of Chemical Engineering, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Baolei Guo
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
4
|
Wang J, Fan T, Zhang H, Ge Y, Lu W, Liu F, Rong D, Guo W. Aortic hemodynamic and morphological analysis before and after repair of thoracoabdominal aortic aneurysm using a G-Branch endograft. Front Physiol 2023; 14:1234989. [PMID: 37601633 PMCID: PMC10438984 DOI: 10.3389/fphys.2023.1234989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Background and objective: The G-Branch endograft is a novel multibranched "off-the-shelf" device used to repair thoracoabdominal aortic aneurysms (TAAAs). This report describes the hemodynamic and morphological performance of the G-Branch endograft in a human patient with TAAA. Materials and methods: We retrospectively reviewed the computed tomography angiography scans and clinical data of a woman in whom TAAA was treated using a G-Branch endograft. Patient-specific three-dimensional models were reconstructed, and computational fluid dynamics and morphological and hemodynamic indicators were analyzed before and after implantation of the device. Results: From a morphological perspective, there was an increase in cross-sectional area in the G-Branch endograft and all bridging stent grafts over time. Blood flow was redistributed among the renovisceral arteries, with a decrease in flow rate in the celiac artery and an increase in the left renal artery. Laminar blood flow was smoother and more rapid after implantation of the G-Branch device and remained stable during follow-up. In the bridging stent grafts, flow recirculation zones were found in the bridging zones of the celiac artery and superior mesenteric artery as well as the distal sealing zones of both renal arteries. Furthermore, higher time-averaged wall shear stress and a lower oscillatory index and relative resident time were found in the G-Branch endograft and bridging stent grafts. Quantitative analysis showed obvious reduction in the surface area ratio of the elevated time-averaged wall shear stress area and surface area ratio of the relative resident time after G-branch implantation. Conclusion: The revascularization of branch vessels occurred following G-branch implantation, with improvements arising not only from morphological changes but also from hemodynamic alterations. The long-term performance of the G-Branch endograft needs further investigation and clinical validation.
Collapse
Affiliation(s)
- Jiabin Wang
- The First Medical Centre, Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Tingting Fan
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongpeng Zhang
- The First Medical Centre, Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yangyang Ge
- The First Medical Centre, Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Weihang Lu
- The First Medical Centre, Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Feng Liu
- The First Medical Centre, Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Dan Rong
- The First Medical Centre, Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Wei Guo
- The First Medical Centre, Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Sengupta S, Yuan X, Maga L, Pirola S, Nienaber CA, Xu XY. Aortic haemodynamics and wall stress analysis following arch aneurysm repair using a single-branched endograft. Front Cardiovasc Med 2023; 10:1125110. [PMID: 37283581 PMCID: PMC10240084 DOI: 10.3389/fcvm.2023.1125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Thoracic endovascular aortic repair (TEVAR) of the arch is challenging given its complex geometry and the involvement of supra-aortic arteries. Different branched endografts have been designed for use in this region, but their haemodynamic performance and the risk for post-intervention complications are not yet clear. This study aims to examine aortic haemodynamics and biomechanical conditions following TVAR treatment of an aortic arch aneurysm with a two-component single-branched endograft. Methods Computational fluid dynamics and finite element analysis were applied to a patient-specific case at different stages: pre-intervention, post-intervention and follow-up. Physiologically accurate boundary conditions were used based on available clinical information. Results Computational results obtained from the post-intervention model confirmed technical success of the procedure in restoring normal flow to the arch. Simulations of the follow-up model, where boundary conditions were modified to reflect change in supra-aortic vessel perfusion observed on the follow-up scan, predicted normal flow patterns but high levels of wall stress (up to 1.3M MPa) and increased displacement forces in regions at risk of compromising device stability. This might have contributed to the suspected endoleaks or device migration identified at the final follow up. Discussion Our study demonstrated that detailed haemodynamic and biomechanical analysis can help identify possible causes for post-TEVAR complications in a patient-specific setting. Further refinement and validation of the computational workflow will allow personalised assessment to aid in surgical planning and clinical decision making.
Collapse
Affiliation(s)
- Sampad Sengupta
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Xun Yuan
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Cardiology and Aortic Centre, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Ludovica Maga
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Selene Pirola
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Christoph A. Nienaber
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Cardiology and Aortic Centre, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Ling Y, Schenkel T, Tang J, Liu H. Computational fluid dynamics investigation on aortic hemodynamics in double aortic arch before and after ligation surgery. J Biomech 2022; 141:111231. [PMID: 35901663 DOI: 10.1016/j.jbiomech.2022.111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023]
Abstract
Double aortic arch (DAA) malformation is one of the reasons for symptomatic vascular rings, the hemodynamics of which is still poorly understood. This study aims to investigate the blood flow characteristics in patient-specific double aortic arches using computational fluid dynamics (CFD). Seven cases of infantile patients with DAA were collected and their computed tomography images were used to reconstruct 3D computational models. A modified Carreau model was used to consider the non-Newtonian effect of blood and a three-element Windkessel model taking the effect of the age of patients into account was applied to reproduce physiological pressure waveforms. Numerical results show that blood flow distribution and energy loss of DAA depends on relative sizes of the two aortic arches and their angles with the ascending aorta. Ligation of either aortic arch increases the energy loss of blood in the DAA, leading to the increase in cardiac workload. Generally, the rising rate of energy loss before and after the surgery is almost linear with the area ratio between the aortic arch without ligation and the ascending aorta.
Collapse
Affiliation(s)
- Yunfei Ling
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Torsten Schenkel
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Jiguo Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| | - Hongtao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Simmering JA, Leeuwerke SJG, Meerwaldt R, Zeebregts CJ, Slump CH, Geelkerken RH. In Vivo Quantification of Cardiac-Pulsatility-Induced Motion Before and After Double-Branched Endovascular Aortic Arch Repair. J Endovasc Ther 2022:15266028221086474. [PMID: 35352980 DOI: 10.1177/15266028221086474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Relay®Branch stent-graft (Terumo Aortic, Sunrise, FL, USA) offers a custom-made endovascular solution for complex aortic arch pathologies. In this technical note, a modified electrocardiography (ECG)-gated computed tomography (CT)-based algorithm was applied to quantify cardiac-pulsatility-induced changes of the aortic arch geometry and motion before and after double-branched endovascular repair (bTEVAR) of an aortic arch aneurysm. This software algorithm has the potential to provide novel and clinically relevant insights in the influence of bTEVAR on aortic anatomy, arterial compliance, and stent-graft dynamics.
Collapse
Affiliation(s)
- Jaimy A Simmering
- Division of Vascular Surgery, Department of Surgery, Medisch Spectrum Twente, Enschede, The Netherlands.,Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Steven J G Leeuwerke
- Division of Vascular Surgery, Department of Surgery, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Robbert Meerwaldt
- Division of Vascular Surgery, Department of Surgery, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Clark J Zeebregts
- Division of Vascular Surgery, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cornelis H Slump
- Robotics and Mechatronics Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Robert H Geelkerken
- Division of Vascular Surgery, Department of Surgery, Medisch Spectrum Twente, Enschede, The Netherlands.,Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
8
|
Haemodynamic Analysis of Branched Endografts for Complex Aortic Arch Repair. Bioengineering (Basel) 2022; 9:bioengineering9020045. [PMID: 35200399 PMCID: PMC8868591 DOI: 10.3390/bioengineering9020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
This study aims to investigate the haemodynamic response induced by implantation of a double-branched endograft used in thoracic endovascular aortic repair (TEVAR) of the aortic arch. Anatomically realistic models were reconstructed from CT images obtained from patients who underwent TEVAR using the RelayPlus double-branched endograft implanted in the aortic arch. Two cases (Patient 1, Patient 2) were included here, both patients presented with type A aortic dissection before TEVAR. To examine the influence of inner tunnel branch diameters on localised flow patterns, three tunnel branch diameters were tested using the geometric model reconstructed for Patient 1. Pulsatile blood flow through the models was simulated by numerically solving the Navier–Stokes equations along with a transitional flow model. The physiological boundary conditions were imposed at the model inlet and outlets, while the wall was assumed to be rigid. Our simulation results showed that the double-branched endograft allowed for the sufficient perfusion of blood to the supra-aortic branches and restored flow patterns expected in normal aortas. The diameter of tunnel branches in the device plays a crucial role in the development of flow downstream of the branches and thus must be selected carefully based on the overall geometry of the vessel. Given the importance of wall shear stress in vascular remodelling and thrombus formation, longitudinal studies should be performed in the future in order to elucidate the role of tunnel branch diameters in long-term patency of the supra-aortic branches following TEVAR with the double-branched endograft.
Collapse
|
9
|
Qiao Y, Mao L, Wang Y, Luan J, Chen Y, Zhu T, Luo K, Fan J. Hemodynamic effects of stent-graft introducer sheath during thoracic endovascular aortic repair. Biomech Model Mechanobiol 2022; 21:419-431. [PMID: 34994871 DOI: 10.1007/s10237-021-01542-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022]
Abstract
Thoracic endovascular aortic repair (TEVAR) has become the standard treatment of a variety of aortic pathologies. The objective of this study is to evaluate the hemodynamic effects of stent-graft introducer sheath during TEVAR. Three idealized representative diseased aortas were designed: aortic aneurysm, coarctation of the aorta, and aortic dissection. Computational fluid dynamics studies were performed in the above idealized aortic geometries. An introducer sheath routinely used in the clinic was virtually placed into diseased aortas. Comparative analysis was carried out to evaluate the hemodynamic effects of the introducer sheath. Results show that the blood flow to the supra-aortic branches would increase above 9% due to the obstruction of the introducer sheath. The region exposed to high endothelial cell activation potential (ECAP) expands in the scenarios of coarctation of the aorta and aortic dissection, which indicates that the probability of thrombus formation may increase during TEVAR. The pressure magnitude in peak systole shows an obvious rise, and a similar phenomenon is not observed in early diastole. The blood viscosity in the aortic arch and descending aorta is remarkably altered by the introducer sheath. The uneven viscosity distribution confirms the necessity of using non-Newtonian models, and high-viscosity region with high ECAP further promotes thrombosis. Our results highlight the hemodynamic effects of stent-graft introducer sheath during TEVAR, which may associate with perioperative complications.
Collapse
Affiliation(s)
- Yonghui Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Le Mao
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Jingyang Luan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanlu Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Ting Zhu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China. .,Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China. .,Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
| |
Collapse
|
10
|
Lyu M, Ventikos Y, Peach TW, Makalanda L, Bhogal P. Virtual Flow-T Stenting for Two Patient-Specific Bifurcation Aneurysms. Front Neurol 2021; 12:726980. [PMID: 34803876 PMCID: PMC8595090 DOI: 10.3389/fneur.2021.726980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The effective treatment of wide necked cerebral aneurysms located at vessel bifurcations (WNBAs) remains a significant challenge. Such aneurysm geometries have typically been approached with Y or T stenting configurations of stents and/or flow diverters, often with the addition of endovascular coils. In this study, two WNBAs were virtually treated by a novel T-stenting technique (Flow-T) with a number of braided stents and flow-diverter devices. Multiple possible device deployment configurations with varying device compression levels were tested, using fast-deployment algorithms, before a steady state computational hemodynamic simulation was conducted to examine the efficacy and performance of each scenario. The virtual fast deployment algorithm based on a linear and torsional spring analogy is used to accurately deploy nine stents in two WNBAs geometries. The devices expand from the distal to proximal side of the devices with respect to aneurysm sac. In the WNBAs modelled, all configurations of Flow-T device placement were shown to reduce factors linked with increased aneurysm rupture risk including aneurysm inflow jets and high aneurysm velocity, along with areas of flow impingement and elevated wall shear stress (WSS). The relative position of the flow-diverting device in the secondary daughter vessel in the Flow-T approach was found to have a negligible effect on overall effectiveness of the procedure in the two geometries considered. The level of interventionalist-applied compression in the braised stent that forms the other arm of the Flow-T approach was shown to impact the aneurysm inflow reduction and aneurysm flow pattern more substantially. In the Flow-T approach the relative position of the secondary daughter vessel flow-diverter device (the SVB) was found to have a negligible effect on inflow reduction, aneurysm flow pattern, or WSS distribution in both aneurysm geometries. This suggests that the device placement in this vessel may be of secondary importance. By contrast, substantially more variation in inflow reduction and aneurysm flow pattern was seen due to variations in braided stent (LVIS EVO or Baby Leo) compression at the aneurysm neck. As such we conclude that the success of a Flow-T procedure is primarily dictated by the level of compression that the interventionalist applies to the braided stent. Similar computationally predicted outcomes for both aneurysm geometries studied suggest that adjunct coiling approach taken in the clinical intervention of the second geometry may have been unnecessary for successful aneurysm isolation. Finally, the computational modelling framework proposed offers an effective planning platform for complex endovascular techniques, such as Flow-T, where the scope of device choice and combination is large and selecting the best strategy and device combination from several candidates is vital.
Collapse
Affiliation(s)
- Mengzhe Lyu
- Department of Mechanical Engineering, University College London (UCL), London, United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London (UCL), London, United Kingdom.,School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Thomas W Peach
- Department of Mechanical Engineering, University College London (UCL), London, United Kingdom
| | - Levansri Makalanda
- Department of Interventional Neuroradiology, The Royal London Hospital, London, United Kingdom
| | - Pervinder Bhogal
- Department of Interventional Neuroradiology, The Royal London Hospital, London, United Kingdom
| |
Collapse
|
11
|
Qiao Y, Mao L, Ding Y, Zhu T, Luo K, Fan J. Fluid-structure interaction: Insights into biomechanical implications of endograft after thoracic endovascular aortic repair. Comput Biol Med 2021; 138:104882. [PMID: 34600328 DOI: 10.1016/j.compbiomed.2021.104882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Thoracic endovascular aortic repair (TEVAR) has developed to be the most effective treatment for aortic diseases. This study aims to evaluate the biomechanical implications of the implanted endograft after TEVAR. We present a novel image-based, patient-specific, fluid-structure computational framework. The geometries of blood, endograft, and aortic wall were reconstructed based on clinical images. Patient-specific measurement data was collected to determine the parameters of the three-element Windkessel. We designed three postoperative scenarios with rigid wall assumption, blood-wall interaction, blood-endograft-wall interplay, respectively, where a two-way fluid-structure interaction (FSI) method was applied to predict the deformation of the composite stent-wall. Computational results were validated with Doppler ultrasound data. Results show that the rigid wall assumption fails to predict the waveforms of blood outflow and energy loss (EL). The complete storage and release process of blood flow energy, which consists of four phases is captured by the FSI method. The endograft implantation would weaken the buffer function of the aorta and reduce mean EL by 19.1%. The closed curve area of wall pressure and aortic volume could indicate the EL caused by the interaction between blood flow and wall deformation, which accounts for 68.8% of the total EL. Both the FSI and endograft have a slight effect on wall shear stress-related-indices. The deformability of the composite stent-wall region is remarkably limited by the endograft. Our results highlight the importance of considering the interaction between blood flow, the implanted endograft, and the aortic wall to acquire physiologically accurate hemodynamics in post-TEVAR computational studies and the deformation of the aortic wall is responsible for the major EL of the blood flow.
Collapse
Affiliation(s)
- Yonghui Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Le Mao
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Ding
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ting Zhu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
A computational fluid study on hemodynamics in visceral arteries in a complicated type B aortic dissection after thoracic endovascular repair. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2020.100054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|