1
|
Buzan E, Potušek S, Duniš L, Pokorny B. Neutral and Selective Processes Shape MHC Diversity in Roe Deer in Slovenia. Animals (Basel) 2022; 12:ani12060723. [PMID: 35327121 PMCID: PMC8944837 DOI: 10.3390/ani12060723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Disease prevention and appropriate wildlife management are among the major challenges in wildlife conservation. In the present study, we made a first assessment of the variability of major histocompatibility complex (MHC) genes in roe deer in Slovenia and evaluated local population adaptation by comparing MHC variability with neutral microsatellites. We discovered three new MHC DRB exon 2 alleles in addition to seven previously described in the literature. Moreover, we found evidence of historical positive selection, as selection analysis indicated that approx. 10% of the encoded amino acids were subjected to episodic positive selection. This study provides the basis for further research on immunogenetic variation in roe deer and highlights opportunities to incorporate genetic data into science-based population management. Abstract Disease control and containment in free-ranging populations is one of the greatest challenges in wildlife management. Despite the importance of major histocompatibility complex (MHC) genes for immune response, an assessment of the diversity and occurrence of these genes is still rare in European roe deer, the most abundant and widespread large mammal in Europe. Therefore, we examined immunogenetic variation in roe deer in Slovenia to identify species adaptation by comparing the genetic diversity of the MHC genes with the data on neutral microsatellites. We found ten MHC DRB alleles, three of which are novel. Evidence for historical positive selection on the MHC was found using the maximum likelihood codon method. Patterns of MHC allelic distribution were not congruent with neutral population genetic findings. The lack of population genetic differentiation in MHC genes compared to existing structure in neutral markers suggests that MHC polymorphism was influenced primarily by balancing selection and, to a lesser extent, by neutral processes such as genetic drift, with no clear evidence of local adaptation. Selection analyses indicated that approx. 10% of amino acids encoded under episodic positive selection. This study represents one of the first steps towards establishing an immunogenetic map of roe deer populations across Europe, aiming to better support science-based management of this important game species.
Collapse
Affiliation(s)
- Elena Buzan
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (S.P.); (L.D.)
- Environmental Protection College, Trg Mladosti 7, 3320 Velenje, Slovenia;
- Correspondence: ; Tel.: +38-65-6117570; Fax: +38-65-61175
| | - Sandra Potušek
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (S.P.); (L.D.)
| | - Luka Duniš
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia; (S.P.); (L.D.)
| | - Boštjan Pokorny
- Environmental Protection College, Trg Mladosti 7, 3320 Velenje, Slovenia;
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Turchetto S, Obber F, Rossi L, D'Amelio S, Cavallero S, Poli A, Parisi F, Lanfranchi P, Ferrari N, Dellamaria D, Citterio CV. Sarcoptic Mange in Wild Caprinae of the Alps: Could Pathology Help in Filling the Gaps in Knowledge? Front Vet Sci 2020; 7:193. [PMID: 32432130 PMCID: PMC7214924 DOI: 10.3389/fvets.2020.00193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 11/24/2022] Open
Abstract
Sarcoptic mange represents the most severe disease for wild Caprinae individuals and populations in Europe, raising concerns for both conservation and management of these ungulates. To date, this disease has been investigated in different wild caprine species and under many different perspectives including diagnostics, epidemiology, impact on the host populations, and genetics of both hosts and parasite, with the aim to disentangle the host-Sarcoptes scabiei relationship. Notwithstanding, uncertainty remains and basic questions still need an answer. Among these are the effect of immune responses on mange severity at an individual level, the main drivers in host-parasite interactions for different clinical outcomes, and the role of the immune response in determining the shift from epidemic to endemic cycle. A deeper approach to the pathology of this disease seems therefore advisable, all the more reason considering that immune response to S. scabiei in wild Caprinae, generally classified as a hypersensitivity, remains poorly understood. In this paper, we reviewed the pathological features associated to sarcoptic mange in wildlife, exploring different kinds of hypersensitivity and outcomes, with the objective of highlighting the major drivers in the different responses to this disease at an individual level and proposing some key topics for future research, with a particular attention to Alps-dwelling wild caprines.
Collapse
Affiliation(s)
| | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie—SCT2 Belluno—U.O. Ecopatologia, Belluno, Italy
| | - Luca Rossi
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Grugliasco, Italy
| | - Stefano D'Amelio
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma “La Sapienza”, Rome, Italy
| | - Serena Cavallero
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma “La Sapienza”, Rome, Italy
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy
| | - Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy
| | - Paolo Lanfranchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Nicola Ferrari
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Debora Dellamaria
- Istituto Zooprofilattico Sperimentale delle Venezie—SCT5 Trento, Trento, Italy
| | - Carlo V. Citterio
- Istituto Zooprofilattico Sperimentale delle Venezie—SCT2 Belluno—U.O. Ecopatologia, Belluno, Italy
| |
Collapse
|
3
|
Rossi L, Tizzani P, Rambozzi L, Moroni B, Meneguz PG. Sanitary Emergencies at the Wild/Domestic Caprines Interface in Europe. Animals (Basel) 2019; 9:ani9110922. [PMID: 31694211 PMCID: PMC6912786 DOI: 10.3390/ani9110922] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/24/2019] [Accepted: 11/02/2019] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Even if it is an important achievement from a biodiversity conservation perspective, the documented increase in abundance of the four native European wild Caprinae (Rupicapra rupicapra, R. pyrenaica, Capra ibex, C. pyrenaica) can also be a matter of concern, since tighter and more frequent contact with sympatric livestock implies a greater risk of transmission of emerging and re-emerging pathogens. This article reviews the main transmissible diseases that, in a European scenario, are of greater significance from a conservation perspective. Epidemics causing major demographic downturns in wild Caprinae populations during recent decades were often triggered by pathogens transmitted at the livestock/wildlife interface. Abstract Population density and distribution of the four native European wild Caprines (Rupicapra rupicapra, Rupicapra pyrenaica, Capra ibex, Capra pyrenaica) have increased in recent decades. The improved conservation status of this valuable wildlife, while a welcome event in general terms, is at the same time a matter of concern since, intuitively, frequent and tighter contacts with sympatric livestock imply a greater risk of cross-transmission of emerging and re-emerging pathogens, and offer unexpected opportunities for pathogens to spread, persist and evolve. This article recalls the transmissible diseases that are perceived in Europe to be of major significance from a conservation perspective, namely brucellosis (BRC) by Brucella melitensis, infectious kerato-conjunctivitis (IKC) by Mycoplasma conjunctivae, pestivirosis (PV) by the border disease virus strain 4 and mange by Sarcoptes scabiei. Special emphasis has been put on the epidemiological role played by small domestic ruminants, and on key knowledge needed to implement evidence-based prevention and control strategies. Remarkably, scientific evidence demonstrates that major demographic downturns in affected wild Caprinae populations in recent decades have often been triggered by pathogens cross-transmitted at the livestock/wildlife interface.
Collapse
|
4
|
Sahoo NR, Kumar P, Khan MF, Mourya R, Ravikumar GVPPS, Tiwari AK. Sequence diversity of major histo-compatibility complex class II DQA1 in Indian Tharparkar cattle: novel alleles and in-silico analysis. HLA 2019; 93:451-461. [PMID: 30868742 DOI: 10.1111/tan.13521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/29/2023]
Abstract
Exon 2 of MHC class II gene codes for the first domain of the molecule that forms the peptide-binding groove and its polymorphism partly explains functional MHC diversity. A 850 bp DQA1 gene fragment spanning from intron I to exon III was typed by sequencing of 40 Tharparkar cattle of various agro-climatic zones of northern India along with 10 Tharparkar crossbreds. On analysis of nucleotide sequences, a total of 30 polymorphic sites (1 insertion and 29 SNPs) were identified in 14 MHC alleles leading to amino acid changes in 5 places in 249 bp (exon 2). Five new BoLa DQA1 alleles were identified and reported. The within group mean distance was highest in Tharparkar herd of Bikaner (0.045) and lowest (0.020) in that of Surathgarh (breeding tract) whereas, between groups mean distance was highest in Bikaner Tharparkar-Suratgarh Tharparkar pair. There was excess of nonsynonymous over synonymous nucleotide substitutions in the present study. The effects of these substitutions were predicted using I-Mutant and Panther online resources. The mean ratio of dN/dS was found to be >1.0 at 12 codons with two mutation hotspots at 13th codon (P = 0.002) and 64th codon (P = 0.01). The phylo-geographic analysis revealed that alleles 5, 7 and 13 formed a different cluster with alleles 7 and 13 grouped by the most frequent allele (BoLa-DQA*1401).
Collapse
Affiliation(s)
- Nihar R Sahoo
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Pushpendra Kumar
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mohd F Khan
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ranjeeta Mourya
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - G V P P S Ravikumar
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.,National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Ashok K Tiwari
- Central Instrumentation Facility, Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
5
|
Lambert S, Ezanno P, Garel M, Gilot-Fromont E. Demographic stochasticity drives epidemiological patterns in wildlife with implications for diseases and population management. Sci Rep 2018; 8:16846. [PMID: 30442961 PMCID: PMC6237989 DOI: 10.1038/s41598-018-34623-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 10/19/2018] [Indexed: 11/28/2022] Open
Abstract
Infectious diseases raise many concerns for wildlife and new insights must be gained to manage infected populations. Wild ungulates provide opportunities to gain such insights as they host many pathogens. Using modelling and data collected from an intensively monitored population of Pyrenean chamois, we investigated the role of stochastic processes in governing epidemiological patterns of pestivirus spread in both protected and hunted populations. We showed that demographic stochasticity led to three epidemiological outcomes: early infection fade-out, epidemic outbreaks with population collapse, either followed by virus extinction or by endemic situations. Without re-introduction, the virus faded out in >50% of replications within 4 years and did not persist >20 years. Test-and-cull of infected animals and vaccination had limited effects relative to the efforts devoted, especially in hunted populations in which only quota reduction somewhat improve population recovery. Success of these strategies also relied on the maintenance of a high level of surveillance of hunter-harvested animals. Our findings suggested that, while surveillance and maintenance of population levels at intermediate densities to avoid large epidemics are useful at any time, a 'do nothing' approach during epidemics could be the 'least bad' management strategy in populations of ungulates species facing pestivirus infection.
Collapse
Affiliation(s)
- Sébastien Lambert
- Université de Lyon, Université Lyon 1, UMR CNRS 5558 Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France.
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem - ZI Mayencin, 38610, Gières, France.
| | | | - Mathieu Garel
- Office National de la Chasse et de la Faune Sauvage, Unité Ongulés Sauvages, 5 allée de Bethléem - ZI Mayencin, 38610, Gières, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, Université Lyon 1, UMR CNRS 5558 Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
- Université de Lyon, VetAgro Sup, Marcy l'Etoile, France
| |
Collapse
|
6
|
Angelone S, Jowers MJ, Molinar Min AR, Fandos P, Prieto P, Pasquetti M, Cano-Manuel FJ, Mentaberre G, Olvera JRL, Ráez-Bravo A, Espinosa J, Pérez JM, Soriguer RC, Rossi L, Granados JE. Hidden MHC genetic diversity in the Iberian ibex (Capra pyrenaica). BMC Genet 2018; 19:28. [PMID: 29739323 PMCID: PMC5941765 DOI: 10.1186/s12863-018-0616-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/30/2018] [Indexed: 01/09/2023] Open
Abstract
Background Defining hidden genetic diversity within species is of great significance when attempting to maintain the evolutionary potential of natural populations and conduct appropriate management. Our hypothesis is that isolated (and eventually small) wild animal populations hide unexpected genetic diversity due to their maintenance of ancient polymorphisms or introgressions. Results We tested this hypothesis using the Iberian ibex (Capra pyrenaica) as an example. Previous studies based on large sample sizes taken from its principal populations have revealed that the Iberian ibex has a remarkably small MHC DRB1 diversity (only six remnant alleles) as a result of recent population bottlenecks and a marked demographic decline that has led to the extinction of two recognized subspecies. Extending on the geographic range to include non-studied isolated Iberian ibex populations, we sequenced a new MHC DRB1 in what seemed three small isolated populations in Southern Spain (n = 132). The findings indicate a higher genetic diversity than previously reported in this important gene. The newly discovered allele, MHC DRB1*7, is identical to one reported in the domestic goat C. aegagrus hircus. Whether or not this is the result of ancient polymorphisms maintained by balancing selection or, alternatively, introgressions from domestic goats through hybridization needs to be clarified in future studies. However, hybridization between Iberian ibex and domestic goats has been reported in Spain and the fact that the newly discovered allele is only present in one of the small isolated populations and not in the others suggests introgression. The new discovered allele is not expected to increase fitness in C. pyrenaica since it generates the same protein as the existing MHC DRB1*6. Analysis of a microsatellite locus (OLADRB1) near the new MHC DRB1*7 gene reveals a linkage disequilibrium between these two loci. The allele OLADRB1, 187 bp in length, was unambiguously linked to the MHC DRB1*7 allele. This enabled us to perform a DRB-STR matching method for the recently discovered MHC allele. Conclusions This finding is critical for the conservation of the Iberian ibex since it directly affects the identification of the units of this species that should be managed and conserved separately (Evolutionarily Significant Units). Electronic supplementary material The online version of this article (10.1186/s12863-018-0616-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samer Angelone
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n, 41092, Sevilla, Spain. .,Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - Michael J Jowers
- CIBIO/ InBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos), Universidade do Porto, Campus Agrario De Vairão, 4485-661, Vairão, Portugal
| | - Anna Rita Molinar Min
- Dipartimento di Scienze Veterinarie, Universita` degli Studi di Torino, Grugliasco, Italy
| | - Paulino Fandos
- Agencia de Medio Ambiente y Agua, E-41092, Sevilla, Isla de la Cartuja, Spain
| | - Paloma Prieto
- Parque Natural Sierras de Cazorla, Segura y Las Villas, Martínez Falero11, E-23470, Cazorla, Jaén, Spain
| | - Mario Pasquetti
- Dipartimento di Scienze Veterinarie, Universita` degli Studi di Torino, Grugliasco, Italy
| | | | - Gregorio Mentaberre
- Servei d'Ecopatologia de Fauna Salvatge (SEFAS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona, Spain
| | - Jorge Ramón López Olvera
- Servei d'Ecopatologia de Fauna Salvatge (SEFAS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona, Spain
| | - Arián Ráez-Bravo
- Servei d'Ecopatologia de Fauna Salvatge (SEFAS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona, Spain
| | - José Espinosa
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, s.n., E-23071, Jaén, Spain
| | - Jesús M Pérez
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, s.n., E-23071, Jaén, Spain
| | - Ramón C Soriguer
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Luca Rossi
- Dipartimento di Scienze Veterinarie, Universita` degli Studi di Torino, Grugliasco, Italy
| | - José Enrique Granados
- Espacio Natural Sierra Nevada, Carretera Antigua de Sierra Nevada, Km 7, E-18071, Pinos Genil, Granada, Spain
| |
Collapse
|
7
|
Salvadori C, Finlayson J, Trogu T, Formenti N, Lanfranchi P, Citterio C, Palarea-Albaladejo J, Poli A, Chianini F. Characterization of Immune System Cell Subsets in Fixed Tissues from Alpine Chamois (Rupicapra rupicapra). J Comp Pathol 2016; 155:207-212. [PMID: 27476109 DOI: 10.1016/j.jcpa.2016.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/10/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022]
Abstract
Immune system cell subsets in lymph nodes and spleen from alpine chamois (Rupicapra rupicapra subspecies rupicapra) living in the Italian Alps were characterized immunohistochemically. Seven primary antibodies (against human CD3, CD79αcy, CD68, or ovine CD4, CD8, CD21 and γδ T-cell receptor [TCR] epitopes) were tested on tissues fixed either in formalin or in zinc salts (ZS) and cross-reactivity with chamois immune cell epitopes was shown. ZS fixation allowed wider identification of immune cells, without the need for antigen retrieval. CD4(+) and CD21(+) cells were labelled only in ZS-fixed tissues. Reagents specific for human CD3, CD79 and CD68 antigens successfully detected chamois immune cells, both in ZS-fixed and formalin-fixed tissues. The reactivity and distribution of immune cells in lymph nodes and spleen were similar to those described in other domestic and wild ruminants. Results from this study may allow future investigation of the immune response and pathogenesis of diseases in the chamois.
Collapse
Affiliation(s)
- C Salvadori
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge, Pisa, Italy
| | - J Finlayson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh, UK
| | - T Trogu
- Department of Veterinary Sciences and Public Health, Milan University, Via Festa del Perdono, Milano, Italy
| | - N Formenti
- Department of Veterinary Sciences and Public Health, Milan University, Via Festa del Perdono, Milano, Italy
| | - P Lanfranchi
- Department of Veterinary Sciences and Public Health, Milan University, Via Festa del Perdono, Milano, Italy
| | - C Citterio
- Istituto Zooprofilattico Sperimentale delle Venezie, Sezione di Belluno, Via M. Cappellari, Belluno, Italy
| | - J Palarea-Albaladejo
- Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, UK
| | - A Poli
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge, Pisa, Italy
| | - F Chianini
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh, UK.
| |
Collapse
|
8
|
The two sides of border disease in Pyrenean chamois (Rupicapra pyrenaica): silent persistence and population collapse. Anim Health Res Rev 2016; 16:70-7. [PMID: 26050575 DOI: 10.1017/s1466252315000055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In 2001, border disease virus (BDV) was identified as the cause of a previously unreported disease in Pyrenean chamois (Rupicapra pyrenaica) in Spain. Since then, the disease has caused a dramatic decrease, and in some cases collapse, of chamois populations and has expanded to nearly the entire distribution area in the Pyrenees. Chamois BDV was characterized as BDV-4 genotype and experimental studies confirmed that it was the primary agent of the disease. The infection has become endemic in the Central and Eastern Pyrenees. However, while most Pyrenean chamois populations have been severely affected by the disease, others have not, despite the circulation of BDV in apparently healthy individuals, suggesting the existence of different viral strategies for persisting in the host population. Changes in the interplay of pathogen, host and environmental factors may lead to the formation of different disease patterns. A key factor influencing disease emergence may be pathogen invasiveness through viral mutation. Host factors, such as behavior, immunity at the population level and genetic variability, may also have driven different epidemiological scenarios. Climatic and other ecological factors may have favored secondary infections, such as pneumonia, that under particular circumstances have been major contributing factors in the high mortality observed in some areas.
Collapse
|
9
|
Zemanová B, Hájková P, Hájek B, Martínková N, Mikulíček P, Zima J, Bryja J. Extremely low genetic variation in endangered Tatra chamois and evidence for hybridization with an introduced Alpine population. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0696-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Rossi S, Doucelin A, Le Potier MF, Eraud C, Gilot-Fromont E. Innate immunity correlates with host fitness in wild boar (Sus scrofa) exposed to classical swine fever. PLoS One 2013; 8:e79706. [PMID: 24260286 PMCID: PMC3832544 DOI: 10.1371/journal.pone.0079706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/24/2013] [Indexed: 11/28/2022] Open
Abstract
Constitutive humoral immunity (CHI) is thought to be a first-line of protection against pathogens invading vertebrate hosts. However, clear evidence that CHI correlates with host fitness in natural conditions is still lacking. This study explores the relationship between CHI, measured using a haemagglutination-haemolysis assay (HAHL), and resistance to classical swine fever virus (CSFV) among wild boar piglets. The individual dynamics of HAHL during piglet growth was analysed, using 423 serum samples from 92 piglets repeatedly captured in the absence of CSFV (in 2006) within two areas showing contrasting food availability. Natural antibody levels increased with age, but, in the youngest piglets antibody levels were higher in individuals from areas with the highest food availability. Complement activity depended on natural antibody levels and piglets' body condition. In the presence of CSFV (i.e., in 2005 within one area), serum samples from piglets that were repeatedly captured were used to assess whether piglet HAHL levels affected CSFV status at a later capture. The correlation between CHI and resistance to CSFV was tested using 79 HAHL measures from 23 piglets captured during a CSFV outbreak. Both natural antibodies and complement activity levels measured at a given time correlated negatively to the subsequent probability of becoming viremic. Finally, capture-mark-recapture models showed that piglets with medium/high average complement activity, independently of their age, were significantly less at risk of becoming viremic and more likely to develop a specific immune response than piglets with low complement activity. Additionally, piglets with high average complement activity showed the highest survival prospects. This study provides evidence linking CHI to individual fitness within a natural mammal population. The results also highlight the potential of HAHL assays to explore the dynamics and co-evolution between wildlife mammal hosts and blood-borne parasites interacting with the CHI.
Collapse
Affiliation(s)
- Sophie Rossi
- Office national de la chasse et de la faune sauvage, unité sanitaire de la faune, Gap, France
- * E-mail:
| | - Anaïs Doucelin
- Office national de la chasse et de la faune sauvage, unité sanitaire de la faune, Gap, France
| | - Marie-Frédérique Le Potier
- French Agency for Food Environmental and Occupational Health and Safety, Unité de virologie et immunologie porcine, Ploufragan, France
- Université Européenne de Bretagne, Rennes, France
| | - Cyril Eraud
- Office national de la chasse et de la faune sauvage, CNERA avifaune migratrice, Chizé, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, VetAgro-Sup Campus Vétérinaire, Marcy l'Etoile, France
- Université de Lyon, Université Lyon 1, UMR CNRS 5558 – LBBE, Villeurbanne, France
| |
Collapse
|