1
|
Meewan I, Panmanee J, Petchyam N, Lertvilai P. HBCVTr: an end-to-end transformer with a deep neural network hybrid model for anti-HBV and HCV activity predictor from SMILES. Sci Rep 2024; 14:9262. [PMID: 38649402 PMCID: PMC11035669 DOI: 10.1038/s41598-024-59933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with approximately 350 million infections globally. To accelerate the finding of effective treatment options, we introduce HBCVTr, a novel ligand-based drug design (LBDD) method for predicting the inhibitory activity of small molecules against HBV and HCV. HBCVTr employs a hybrid model consisting of double encoders of transformers and a deep neural network to learn the relationship between small molecules' simplified molecular-input line-entry system (SMILES) and their antiviral activity against HBV or HCV. The prediction accuracy of HBCVTr has surpassed baseline machine learning models and existing methods, with R-squared values of 0.641 and 0.721 for the HBV and HCV test sets, respectively. The trained models were successfully applied to virtual screening against 10 million compounds within 240 h, leading to the discovery of the top novel inhibitor candidates, including IJN04 for HBV and IJN12 and IJN19 for HCV. Molecular docking and dynamics simulations identified IJN04, IJN12, and IJN19 target proteins as the HBV core antigen, HCV NS5B RNA-dependent RNA polymerase, and HCV NS3/4A serine protease, respectively. Overall, HBCVTr offers a new and rapid drug discovery and development screening method targeting HBV and HCV.
Collapse
Affiliation(s)
- Ittipat Meewan
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pichaya Lertvilai
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
2
|
ElHefnawi M, Jo E, Tolba MM, Fares M, Yang J, Shahbaaz M, Windisch MP. Drug repurposing through virtual screening and in vitro validation identifies tigecycline as a novel putative HCV polymerase inhibitor. Virology 2022; 570:9-17. [DOI: 10.1016/j.virol.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/25/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
|
3
|
Aurones: A Golden Resource for Active Compounds. Molecules 2021; 27:molecules27010002. [PMID: 35011233 PMCID: PMC8746708 DOI: 10.3390/molecules27010002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Deemed as poorly represented in nature, aurones have been often overlooked by researchers compared to other members of the flavonoid superfamily. However, over the past two decades, they have been reassessed by the scientific community, who are increasingly appreciating their ability to modulate several biological pathways. This review summarizes the recent literature on this class of compounds, which has been analyzed from both a chemical and a functional point of view. Original articles, reviews and editorials featured in Pubmed and Scifinder over the last twenty years have been taken into account to provide the readers with a view of the chemical strategies to obtain them, their functional properties, and their potential of technological use. The resulting comprehensive picture aims at raising the awareness of these natural derivatives as effective drug candidates, fostering the development of novel synthetic analogues.
Collapse
|
4
|
Li L, Wang M, Chen Y, Hu T, Yang Y, Zhang Y, Bi G, Wang W, Liu E, Han J, Lu T, Su D. Structure of the enterovirus D68 RNA-dependent RNA polymerase in complex with NADPH implicates an inhibitor binding site in the RNA template tunnel. J Struct Biol 2020; 211:107510. [PMID: 32353513 DOI: 10.1016/j.jsb.2020.107510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/05/2023]
Abstract
Enterovirus D68 (EV-D68) is an emerging viral pathogen belonging to the Enterovirus genus of the Picornaviridae family, which is a serious threat to human health and has resulted in significant economic losses. The EV-D68 genome encodes an RNA-dependent RNA polymerase (RdRp) 3Dpol, which is central for viral genome replication and considered as a promising target for specific antiviral therapeutics. In this study, we report the crystal structures of human EV-D68 RdRp in the apo state and in complex with the inhibitor NADPH, which was selected by using a structure-based virtual screening approach. The EV-D68-RdRp-NADPH complex is the first RdRp-inhibitor structure identified in the species Enterovirus D. The inhibitor NADPH occupies the RNA template binding channel of EV-D68 RdRp with a novel binding pocket. Additionally, residues involved in the NADPH binding pocket of EV-D68 RdRp are highly conserved in RdRps of enteroviruses. Therefore, the enzyme activity of three RdRps from EV-D68, poliovirus, and enterovirus A71 is shown to decrease when titrated with NADPH separately in vitro. Furthermore, we identified that NADPH plays a pivotal role as an RdRp inhibitor instead of a chain terminator during restriction of RNA-dependent RNA replication. In the future, derivatives of NADPH may pave the way for novel inhibitors of RdRp through compound modification, providing potential antiviral agents for treating enteroviral infection and related diseases.
Collapse
Affiliation(s)
- Li Li
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Meilin Wang
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yiping Chen
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Hu
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Yang
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yang Zhang
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gang Bi
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Enmei Liu
- Department of Respiratory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junhong Han
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tao Lu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.
| | - Dan Su
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Mittal L, Kumari A, Suri C, Bhattacharya S, Asthana S. Insights into structural dynamics of allosteric binding sites in HCV RNA-dependent RNA polymerase. J Biomol Struct Dyn 2019; 38:1612-1625. [PMID: 31057089 DOI: 10.1080/07391102.2019.1614480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inhibition of the viral RNA-dependent RNA polymerase (RdRp) to resolve chronic infection is a useful therapeutic strategy against Hepatitis C virus (HCV). Non-nucleoside inhibitors (NNIs) of RdRp are small molecules that bind tightly with allosteric sites on the enzyme, thereby inhibiting polymerase activity. A large number of crystal structures (176) were studied to establish the structure-activity relationship along with the mechanism of inhibition and resistance between HCV RdRp and NNIs at different allosteric sites. The structure and the associated dynamics are the blueprint to understand the function of the protein. We have implemented the ligand-based pharmacophore and molecular dynamic simulations to extract the possible local and global characteristics of RdRp upon NNI binding and the structural-dynamical features possessed by the known actives. Our results suggest that the NNI binding induces significant fluctuations at the atomic level which are critical for enzymatic activity, with minimal global structural alterations. Residue-wise mapping of interactions of NNIs at different sites exhibited some conserved interaction patterns of key amino acids and water molecules. Here, the structural insights are explored to understand the correlation between the dynamics of protein's subdomains and function at the molecular level, useful for genotype-specific rational designing of NNIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lovika Mittal
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Anita Kumari
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Charu Suri
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Sankar Bhattacharya
- Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
6
|
Jamil Z, Waheed Y, Malik M, Durrani AA. Effect of Sofosbuvir plus Ribavirin therapy on hepatitis C patients in Pakistan: a retrospective study. PeerJ 2018; 6:e4853. [PMID: 29844992 PMCID: PMC5971832 DOI: 10.7717/peerj.4853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The annual global deaths from viral hepatitis is 1.4 million. Pakistan has the second highest burden of hepatitis C in the world. There is dire need to evaluate the response of new direct acting antivirals for the treatment of hepatitis C patients in Pakistan. World Health Organization has developed a strategy to treat 80% of HCV patients by 2030. In Pakistan, HCV treatment rate is 1%. The aim of the study was to analyze the effect of Sofosbuvir plus Ribavirin therapy on HCV patients in Pakistan. METHODS An observational study was conducted at Fauji Foundation Hospital Rawalpindi from November-2016 to July-2017. All the drugs were administered according to the guidelines of Asia Pacific Association for the Study of Liver (APASL) for the treatment of HCV patients. A total 327 chronic HCV patients were enrolled in the study and 304 completed the treatment. Patients belonged to three different groups including treatment: Naïve patients (n = 107), Non-Responder patients (n = 126) and patients who relapsed to Interferon therapy (n = 71). All the patients were given Sofosbuvir plus Ribavirin therapy for 24 weeks and the early virological response (EVR) and end treatment response (ETR) was calculated. Different parameters including patient age, viral load, viral genotype, blood picture, ultrasound findings and liver function tests were also studied. RESULTS Out of 304 patients, 301 (99%) achieved EVR and 300 achieved ETR (98.7%). End treatment response was 95.6% in HCV genotype 1 and 98.9% in HCV genotype 3 patients. ETR was 99.06% in treatment Naïve, 99.20% in non-responders and 97.18% in previously relapsed patients. We did not find the association of any host and viral factor in the determination of EVR and ETR. CONCLUSION The Sofosbuvir plus Ribavirin treatment is highly effective, safe and cost-effective for the treatment of hepatitis C patients in Pakistan.
Collapse
Affiliation(s)
- Zubia Jamil
- Department of Medicine, Foundation University Medical College, Foundation University Islamabad, Islamabad, Pakistan
| | - Yasir Waheed
- Multidisciplinary Laboratory, Foundation University Medical College, Foundation University Islamabad, Islamabad, Pakistan
| | - Maryam Malik
- Department of Medicine, Fauji Foundation Hospital, Rawalpindi, Pakistan
| | - Asghar A. Durrani
- Department of Medicine, Fauji Foundation Hospital, Rawalpindi, Pakistan
| |
Collapse
|
7
|
Chikungunya virus nsP4 RNA-dependent RNA polymerase core domain displays detergent-sensitive primer extension and terminal adenylyltransferase activities. Antiviral Res 2017; 143:38-47. [DOI: 10.1016/j.antiviral.2017.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/04/2017] [Indexed: 01/10/2023]
|
8
|
Ganta KK, Mandal A, Debnath S, Hazra B, Chaubey B. Anti-HCV Activity from Semi-purified Methanolic Root Extracts of Valeriana wallichii. Phytother Res 2017; 31:433-440. [PMID: 28078810 DOI: 10.1002/ptr.5765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 01/10/2023]
Abstract
Hepatitis C virus (HCV) is a serious global health problem affecting approximately 130-150 million individuals. Presently available direct-acting anti-HCV drugs have higher barriers to resistance and also improved success rate; however, cost concerns limit their utilization, especially in developing countries like India. Therefore, development of additional agents to combat HCV infection is needed. In the present study, we have evaluated anti-HCV potential of water, chloroform, and methanol extracts from roots of Valeriana wallichii, a traditional Indian medicinal plant. Huh-7.5 cells infected with J6/JFH chimeric HCV strain were treated with water, chloroform, and methanol extracts at different concentrations. Semi-quantitative reverse transcription polymerase chain reaction result demonstrated that methanolic extract showed reduction in HCV replication. The methanolic extract was fractionated by thin layer chromatography, and the purified fractions (F1, F2, F3, and F4) were checked for anti-HCV activity. Significant viral inhibition was noted only in F4 fraction. Further, intrinsic fluorescence assay of purified HCV RNA-dependent RNA polymerase NS5B in the presence of F4 resulted in sharp quenching of intrinsic fluorescence with increasing amount of plant extract. Our results indicated that methanolic extract of V. wallichii and its fraction (F4) inhibited HCV by binding with HCV NS5B protein. The findings would be further investigated to identify the active principle/lead molecule towards development of complementary and alternative therapeutics against HCV. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Krishna Kumar Ganta
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anirban Mandal
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sukalyani Debnath
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Binay Chaubey
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| |
Collapse
|
9
|
Analysis of Ribonucleotide 5'-Triphosphate Analogs as Potential Inhibitors of Zika Virus RNA-Dependent RNA Polymerase by Using Nonradioactive Polymerase Assays. Antimicrob Agents Chemother 2017; 61:AAC.01967-16. [PMID: 27993851 DOI: 10.1128/aac.01967-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/13/2016] [Indexed: 01/20/2023] Open
Abstract
Zika virus (ZIKV) is an emerging human pathogen that is spreading rapidly through the Americas and has been linked to the development of microcephaly and to a dramatically increased number of Guillain-Barré syndrome cases. Currently, no vaccine or therapeutic options for the prevention or treatment of ZIKV infections exist. In the study described in this report, we expressed, purified, and characterized full-length nonstructural protein 5 (NS5) and the NS5 polymerase domain (NS5pol) of ZIKV RNA-dependent RNA polymerase. Using purified NS5, we developed an in vitro nonradioactive primer extension assay employing a fluorescently labeled primer-template pair. Both purified NS5 and NS5pol can carry out in vitro RNA-dependent RNA synthesis in this assay. Our results show that Mn2+ is required for enzymatic activity, while Mg2+ is not. We found that ZIKV NS5 can utilize single-stranded DNA but not double-stranded DNA as a template or a primer to synthesize RNA. The assay was used to compare the efficiency of incorporation of analog 5'-triphosphates by the ZIKV polymerase and to calculate their discrimination versus that of natural ribonucleotide triphosphates (rNTPs). The 50% inhibitory concentrations for analog rNTPs were determined in an alternative nonradioactive coupled-enzyme assay. We determined that, in general, 2'-C-methyl- and 2'-C-ethynyl-substituted analog 5'-triphosphates were efficiently incorporated by the ZIKV polymerase and were also efficient chain terminators. Derivatives of these molecules may serve as potential antiviral compounds to be developed to combat ZIKV infection. This report provides the first characterization of ZIKV polymerase and demonstrates the utility of in vitro polymerase assays in the identification of potential ZIKV inhibitors.
Collapse
|
10
|
Sesmero E, Brown JA, Thorpe IF. Molecular simulations to delineate functional conformational transitions in the HCV polymerase. J Comput Chem 2016; 38:1125-1137. [PMID: 27859387 DOI: 10.1002/jcc.24662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 01/08/2023]
Abstract
Hepatitis C virus (HCV) is a global health concern for which there is no vaccine available. The HCV polymerase is responsible for the critical function of replicating the RNA genome of the virus. Transitions between at least two conformations (open and closed) are necessary to allow the enzyme to replicate RNA. In this study, molecular dynamic simulations were initiated from multiple crystal structures to understand the free energy landscape (FEL) explored by the enzyme as it interconverts between these conformations. Our studies reveal the location of distinct states within the FEL as well as the molecular interactions associated with these states. Specific hydrogen bonds appear to play a key role in modulating conformational transitions. This knowledge is essential to elucidate the role of these conformations in replication and may also be valuable in understanding the basis by which this enzyme is inhibited by small molecules. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ester Sesmero
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| | - Jodian A Brown
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| | - Ian F Thorpe
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
| |
Collapse
|
11
|
Mandal A, Ganta KK, Chaubey B. Combinations of siRNAs against La Autoantigen with NS5B or hVAP-A Have Additive Effect on Inhibition of HCV Replication. HEPATITIS RESEARCH AND TREATMENT 2016; 2016:9671031. [PMID: 27446609 PMCID: PMC4942654 DOI: 10.1155/2016/9671031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus is major cause of chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Presently available direct-acting antiviral drugs have improved success rate; however, high cost limits their utilization, especially in developing countries like India. In the present study, we evaluated anti-HCV potential of several siRNAs targeted against the HCV RNA-dependent RNA polymerase NS5B and cellular factors, La autoantigen, PSMA7, and human VAMP-associated protein to intercept different steps of viral life cycle. The target genes were downregulated individually as well as in combinations and their impact on viral replication was evaluated. Individual downregulation of La autoantigen, PSMA7, hVAP-A, and NS5B resulted in inhibition of HCV replication by about 67.2%, 50.7%, 39%, and 52%, respectively. However, antiviral effect was more pronounced when multiple genes were downregulated simultaneously. Combinations of siRNAs against La autoantigen with NS5B or hVAP-A resulted in greater inhibition in HCV replication. Our findings indicate that siRNA is a potential therapeutic tool for inhibiting HCV replication and simultaneously targeting multiple viral steps with the combination of siRNAs is more effective than silencing a single target.
Collapse
Affiliation(s)
- Anirban Mandal
- Centre for Advance Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Krishna Kumar Ganta
- Centre for Advance Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Binay Chaubey
- Centre for Advance Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, UG and MUG, Abrahama 58 Street, 80-307 Gdańsk, Poland
| |
Collapse
|
12
|
Ayub G, Waheed Y. Sequence analysis of the L protein of the Ebola 2014 outbreak: Insight into conserved regions and mutations. Mol Med Rep 2016; 13:4821-4826. [PMID: 27082438 DOI: 10.3892/mmr.2016.5145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023] Open
Abstract
The 2014 Ebola outbreak was one of the largest that have occurred; it started in Guinea and spread to Nigeria, Liberia and Sierra Leone. Phylogenetic analysis of the current virus species indicated that this outbreak is the result of a divergent lineage of the Zaire ebolavirus. The L protein of Ebola virus (EBOV) is the catalytic subunit of the RNA‑dependent RNA polymerase complex, which, with VP35, is key for the replication and transcription of viral RNA. Earlier sequence analysis demonstrated that the L protein of all non‑segmented negative‑sense (NNS) RNA viruses consists of six domains containing conserved functional motifs. The aim of the present study was to analyze the presence of these motifs in 2014 EBOV isolates, highlight their function and how they may contribute to the overall pathogenicity of the isolates. For this purpose, 81 2014 EBOV L protein sequences were aligned with 475 other NNS RNA viruses, including Paramyxoviridae and Rhabdoviridae viruses. Phylogenetic analysis of all EBOV outbreak L protein sequences was also performed. Analysis of the amino acid substitutions in the 2014 EBOV outbreak was conducted using sequence analysis. The alignment demonstrated the presence of previously conserved motifs in the 2014 EBOV isolates and novel residues. Notably, all the mutations identified in the 2014 EBOV isolates were tolerant, they were pathogenic with certain examples occurring within previously determined functional conserved motifs, possibly altering viral pathogenicity, replication and virulence. The phylogenetic analysis demonstrated that all sequences with the exception of the 2014 EBOV sequences were clustered together. The 2014 EBOV outbreak has acquired a great number of mutations, which may explain the reasons behind this unprecedented outbreak. Certain residues critical to the function of the polymerase remain conserved and may be targets for the development of antiviral therapeutic agents.
Collapse
Affiliation(s)
- Gohar Ayub
- Department of Health Biotechnology, Atta‑ur‑Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Yasir Waheed
- Department of Health Biotechnology, Atta‑ur‑Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
13
|
Ayub G, Waheed Y, Najmi MH. Prediction and conservancy analysis of promiscuous T-cell binding epitopes of Ebola virus L protein: An in silico approach. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016; 6:169-173. [DOI: 10.1016/s2222-1808(15)61007-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Azam S, Manzoor S, Imran M, Ashraf J, Ashraf S, Resham S, Ghani E. Role of interferon gamma and tumor necrosis factor-related apoptosis-inducing ligand receptor 1 single nucleotide polymorphism in natural clearance and treatment response of HCV infection. Viral Immunol 2015; 28:222-8. [PMID: 25798684 DOI: 10.1089/vim.2014.0111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hepatitis C virus (HCV) pathogenesis and treatment outcomes are multifactorial phenomena involving both viral and host factors. This study was designed to determine the role of tumor necrosis factor-related apoptosis-inducing ligand receptor 1(TRAIL-R1) and interferon gamma (IFN-γ) genetic mutations in susceptibility and response to interferon-based therapy of hepatitis C virus (HCV) infection. The detection of TRAIL-R1 rs4242392 and IFN-γ rs2069707 single nucleotide polymorphisms was completed in 118 chronic HCV patients and 96 healthy controls by allele-specific polymerase chain reaction and restriction fragment length polymorphisms polymerase chain reaction. Patients were further categorized into sustained virological responder (SVR) and nonresponder (NR) groups on the basis of their response to interferon-based therapy for HCV infection. Real-time PCR was used for HCV quantification. HCV genotyping was performed by Ohno's method. The results demonstrated that the distribution of the TRAIL-R1 rs4242392TT genotype was significantly higher in the SVR group (78%) compared to the NR group (36%). It showed that chronic HCV patients possessing the TRAIL-R1 rs4242392TT genotype are better responders to interferon-based therapy (p<0.05). The prevalence of the TRAIL-R1 rs4242392TT genotype in healthy controls and chronic HCV patients was 56% and 65% respectively. It indicated that there is the TRAIL-R1 rs4242392 genetic variation plays no role in the spontaneous clearance of HCV infection (p>0.05). The distribution of IFN-γ rs2069707 was the opposite to TRAIL-R1 rs4242392 prevalence, that is, there was high distribution of the IFN-γ rs2069707GG genotype in patients and healthy controls (p<0.05), while the prevalence of IFN-γ rs2069707GG in SVR and NR groups was comparable (p>0.05). In conclusion, genetic variation of TRAIL-R1 rs4242392 is linked with response to interferon-based therapy for HCV infection, and genetic variation IFN-γ rs2069707 is associated with natural clearance of HCV infection.
Collapse
Affiliation(s)
- Sikandar Azam
- 1 Atta-ur-Rehman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology , Islamabad, Pakistan
| | | | | | | | | | | | | |
Collapse
|
15
|
Waheed Y. Effect of interferon plus ribavirin therapy on hepatitis C virus genotype 3 patients from Pakistan: Treatment response, side effects and future prospective. ASIAN PAC J TROP MED 2015; 8:85-89. [PMID: 25902019 DOI: 10.1016/s1995-7645(14)60193-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/15/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023] Open
Abstract
More than 10 million people are suffering from hepatitis C virus (HCV) in Pakistan. The available treatment option is a combination of interferon and ribavirin. Treatment response is linked with several factors and also induces a number of side effects. We searched in Pubmed, Pak Medi Net and Google Scholar for the articles presenting the effect of interferon plus ribavirin therapy on HCV patients from Pakistan, their side effects and future prospects. The major prevalent HCV genotype in Pakistan is 3. Conventional interferon alpha plus ribavirin showed sustained virological response of 54%-64% while pegylated interferon alpha plus ribavirin showed sustained virological response of 58%-75%. IL-28B CC genotype is linked with better sustained virological response. Studies on patients with HCV genotype 3 infections showed no correlation between treatment response and interferon sensitivity determining region mutations. Interferon therapy is linked with a number of side effects like thyroid dysfuncton, haematological disorders, weight loss, gastrointestinal tract side effects and neuropsychiatric side effects. Unusual side effects of clubbing of fingers and seizures were also observed in a couple of patients. Interferon alpha plus ribavirin therapy showed better response rate in HCV genotype 3 patients from Pakistan with number of side effects. A couple of interferon free therapies are light of hope for the patients living with HCV.
Collapse
Affiliation(s)
- Yasir Waheed
- Atta ur Rahman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; Foundation University Medical College, Foundation University Islamabad, DHA Phase 1, Islamabad 44000, Pakistan.
| |
Collapse
|
16
|
Waheed Y, Bhatti A, Anjum S, Ashraf M. Sequence comparison and phylogenetic analysis of hepatitis C virus genotype 3 polymerase. Mol Med Rep 2014; 9:1266-1270. [PMID: 24481933 DOI: 10.3892/mmr.2014.1926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/04/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a worldwide health problem with high morbidity and mortality. HCV polymerase is an attractive target for the development of antiviral strategies. The aim of the present study was to report the sequence variation in the HCV NS5B gene from genotype 3 patient samples. The gene was amplified, cloned and sequenced. A nucleotide and amino acid sequence comparison of conserved motifs of HCV NS5B from the current reported sequences and previously reported genotype 3 sequences was performed. The sequence comparison indicated that the motifs A, B, C and F and β loop sequences are conserved in the reported sequences, while sequence variation was observed in motifs D and E. Amino acids E18, Y191, C274, Y276 and H502, which are involved in the interaction between template and primer, are highly conserved in the reported sequences. R48, R158, D225, S367, R386 and R394 amino acids interact with initiating GTP, and are also highly conserved in the reported sequences. A phylogenetic tree revealed that the sequences are clustered with sequences from India. HCV polymerase lacks proofreading ability and has high error rates. The present study revealed that the residues that form the important motifs of HCV NS5B remain conserved. However, it was observed that numerous place changes in the nucleotide sequences did not affect the amino acid sequences of HCV NS5B. The conserved motifs are strong targets for the development of peptide vaccines against HCV.
Collapse
Affiliation(s)
- Yasir Waheed
- Atta‑ur‑Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Attya Bhatti
- Atta‑ur‑Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sadia Anjum
- Atta‑ur‑Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Ashraf
- Atta‑ur‑Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
17
|
Hepatitis C virus genetic variability and the presence of NS5B resistance-associated mutations as natural polymorphisms in selected genotypes could affect the response to NS5B inhibitors. Antimicrob Agents Chemother 2014; 58:2781-97. [PMID: 24590484 DOI: 10.1128/aac.02386-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Because of the extreme genetic variability of hepatitis C virus (HCV), we analyzed the NS5B polymerase genetic variability in circulating HCV genotypes/subtypes and its impact on the genetic barrier for the development of resistance to clinically relevant nucleoside inhibitors (NIs)/nonnucleoside inhibitors (NNIs). The study included 1,145 NS5B polymerase sequences retrieved from the Los Alamos HCV database and GenBank. The genetic barrier was calculated for drug resistance emergence. Prevalence and genetic barrier were calculated for 1 major NI and 32 NNI resistance variants (13 major and 19 minor) at 21 total NS5B positions. Docking calculations were used to analyze sofosbuvir affinity toward the diverse HCV genotypes. Overall, NS5B polymerase was moderately conserved among all HCV genotypes, with 313/591 amino acid residues (53.0%) showing ≤1% variability and 83/591 residues (14.0%) showing high variability (≥25.1%). Nine NNI resistance variants (2 major variants, 414L and 423I; 7 minor variants, 316N, 421V, 445F, 482L, 494A, 499A, and 556G) were found as natural polymorphisms in selected genotypes. In particular, 414L and 423I were found in HCV genotype 4 (HCV-4) (n = 14/38, 36.8%) and in all HCV-5 sequences (n = 17, 100%), respectively. Regardless of HCV genotype, the 282T major NI resistance variant and 10 major NNI resistance variants (316Y, 414L, 423I/T/V, 448H, 486V, 495L, 554D, and 559G) always required a single nucleotide substitution to be generated. Conversely, the other 3 major NNI resistance variants (414T, 419S, and 422K) were associated with a different genetic barrier score development among the six HCV genotypes. Sofosbuvir docking analysis highlighted a better ligand affinity toward HCV-2 than toward HCV-3, in agreement with the experimental observations. The genetic variability among HCV genotypes, particularly with the presence of polymorphisms at NNI resistance positions, could affect their responsiveness to NS5B inhibitors. A pretherapy HCV NS5B sequencing could help to provide patients with the full efficacy of NNI-containing regimens.
Collapse
|
18
|
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
19
|
Coats SJ, Garnier-Amblard EC, Amblard F, Ehteshami M, Amiralaei S, Zhang H, Zhou L, Boucle SRL, Lu X, Bondada L, Shelton JR, Li H, Liu P, Li C, Cho JH, Chavre SN, Zhou S, Mathew J, Schinazi RF. Chutes and ladders in hepatitis C nucleoside drug development. Antiviral Res 2013; 102:119-47. [PMID: 24275341 DOI: 10.1016/j.antiviral.2013.11.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 02/07/2023]
Abstract
Chutes and Ladders is an exciting up-and-down-again game in which players race to be the first to the top of the board. Along the way, they will find ladders to help them advance, and chutes that will cause them to move backwards. The development of nucleoside analogs for clinical treatment of hepatitis C presents a similar scenario in which taking shortcuts may help quickly advance a program, but there is always a tremendous risk of being sent backwards as one competes for the finish line. In recent years the treatment options for chronic hepatitis C virus (HCV) infection have expand due to the development of a replicon based in vitro evaluation system, allowing for the identification of multiple drugable viral targets along with a concerted and substantial drug discovery effort. Three major drug targets have reached clinical study for chronic HCV infection: the NS3/4A serine protease, the large phosphoprotein NS5A, and the NS5B RNA-dependent RNA polymerase. Recently, two oral HCV protease inhibitors were approved by the FDA and were the first direct acting anti-HCV agents to result from the substantial research in this area. There are currently many new chemical entities from several different target classes that are being evaluated worldwide in clinical trials for their effectiveness at achieving a sustained virologic response (SVR) (Pham et al., 2004; Radkowski et al., 2005). Clearly the goal is to develop therapies leading to a cure that are safe, widely accessible and available, and effective against all HCV genotypes (GT), and all stages of the disease. Nucleoside analogs that target the HCV NS5B polymerase that have reached human clinical trials is the focus of this review as they have demonstrated significant advantages in the clinic with broader activity against the various HCV GT and a higher barrier to the development of resistant viruses when compared to all other classes of HCV inhibitors.
Collapse
Affiliation(s)
- Steven J Coats
- RFS Pharma, LLC, 1860 Montreal Road, Tucker, GA 30084, USA
| | | | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Maryam Ehteshami
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Sheida Amiralaei
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Hongwang Zhang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Longhu Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Sebastien R L Boucle
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Xiao Lu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Lavanya Bondada
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Jadd R Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Hao Li
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Peng Liu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Chengwei Li
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Jong Hyun Cho
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Satish N Chavre
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Shaoman Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Judy Mathew
- RFS Pharma, LLC, 1860 Montreal Road, Tucker, GA 30084, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA.
| |
Collapse
|
20
|
Accounting for Target Flexibility and Water Molecules by Docking to Ensembles of Target Structures: The HCV NS5B Palm Site I Inhibitors Case Study. J Chem Inf Model 2013; 54:481-97. [DOI: 10.1021/ci400367m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|