1
|
Liu Q, Xu W, Lu S, Jiang J, Zhou J, Shao Z, Liu X, Xu L, Xiong Y, Zheng H, Jin S, Jiang H, Cao W, Xu J. Landscape of emerging and re-emerging infectious diseases in China: impact of ecology, climate, and behavior. Front Med 2018; 12:3-22. [PMID: 29368266 PMCID: PMC7089168 DOI: 10.1007/s11684-017-0605-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/24/2017] [Indexed: 10/26/2022]
Abstract
For the past several decades, the infectious disease profile in China has been shifting with rapid developments in social and economic aspects, environment, quality of food, water, housing, and public health infrastructure. Notably, 5 notifiable infectious diseases have been almost eradicated, and the incidence of 18 additional notifiable infectious diseases has been significantly reduced. Unexpectedly, the incidence of over 10 notifiable infectious diseases, including HIV, brucellosis, syphilis, and dengue fever, has been increasing. Nevertheless, frequent infectious disease outbreaks/events have been reported almost every year, and imported infectious diseases have increased since 2015. New pathogens and over 100 new genotypes or serotypes of known pathogens have been identified. Some infectious diseases seem to be exacerbated by various factors, including rapid urbanization, large numbers of migrant workers, changes in climate, ecology, and policies, such as returning farmland to forests. This review summarizes the current experiences and lessons from China in managing emerging and re-emerging infectious diseases, especially the effects of ecology, climate, and behavior, which should have merits in helping other countries to control and prevent infectious diseases.
Collapse
Affiliation(s)
- Qiyong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenbo Xu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Shan Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiafu Jiang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071, China
| | - Jieping Zhou
- The Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100094, China.,State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences and Beijing Normal University, Beijing, 100094, China
| | - Zhujun Shao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiaobo Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Lei Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Han Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Sun Jin
- The Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100094, China.,State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences and Beijing Normal University, Beijing, 100094, China
| | - Hai Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wuchun Cao
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing, 100071, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
2
|
Bai X, Zhang W, Tang X, Xin Y, Xu Y, Sun H, Luo X, Pu J, Xu J, Xiong Y, Lu S. Shiga Toxin-Producing Escherichia coli in Plateau Pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau, China. Front Microbiol 2016; 7:375. [PMID: 27047483 PMCID: PMC4802371 DOI: 10.3389/fmicb.2016.00375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are an emerging group of zoonotic pathogens. Ruminants are the natural reservoir of STEC. In this study we determined the prevalence and characteristics of the STEC in plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau, China. A total of 1116 pika samples, including 294 intestinal contents samples, 317 fecal samples, and 505 intestinal contents samples, were collected from May to August in the years 2012, 2013, and 2015, respectively. Twenty-one samples (1.88%) yielded at least one STEC isolate; in total, 22 STEC isolates were recovered. Thirteen different O serogroups and 14 serotypes were identified. One stx 1 subtype (stx 1a) and three stx 2 subtypes (stx 2a, stx 2b, and stx 2d) were present in the STEC isolates. Fifteen, fourteen, and three STEC isolates harbored the virulence genes ehxA, subA, and astA, respectively. Adherence-associated genes iha and saa were, respectively, present in 72.73 and 68.18% of the STEC isolates. Twenty antibiotics were active against all the STEC isolates; all strains were resistant to penicillin G, and some to cephalothin or streptomycin. The 22 STEC isolates were divided into 16 pulsed-field gel electrophoresis patterns and 12 sequence types. Plateau pikas may play a role in the ongoing circulation of STEC in the Qinghai-Tibetan plateau. This study provides the first report on STEC in plateau pikas and new information about STEC reservoirs in wildlife. Based on the serotypes, virulence gene profiles and multi-locus sequence typing (MLST) analysis, the majority of these pika STECs may pose a low public health risk.
Collapse
Affiliation(s)
- Xiangning Bai
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Wang Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Xinyuan Tang
- Qinghai Institute for Endemic Disease Prevention and Control Xining, China
| | - Youquan Xin
- Qinghai Institute for Endemic Disease Prevention and Control Xining, China
| | - Yanmei Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Hui Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Xuelian Luo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Ji Pu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| | - Shan Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| |
Collapse
|
3
|
Bai X, Wang H, Xin Y, Wei R, Tang X, Zhao A, Sun H, Zhang W, Wang Y, Xu Y, Zhang Z, Li Q, Xu J, Xiong Y. Prevalence and characteristics of Shiga toxin-producing Escherichia coli isolated from retail raw meats in China. Int J Food Microbiol 2015; 200:31-8. [DOI: 10.1016/j.ijfoodmicro.2015.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/31/2014] [Accepted: 01/24/2015] [Indexed: 12/19/2022]
|
6
|
Meng Q, Bai X, Zhao A, Lan R, Du H, Wang T, Shi C, Yuan X, Bai X, Ji S, Jin D, Yu B, Wang Y, Sun H, Liu K, Xu J, Xiong Y. Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China. BMC Microbiol 2014; 14:5. [PMID: 24393167 PMCID: PMC3893481 DOI: 10.1186/1471-2180-14-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 01/02/2014] [Indexed: 01/21/2023] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) is recognized as an important human diarrheal pathogen. Swine plays an important role as a carrier of this pathogen. In this study we determined the prevalence and characteristics of STEC from healthy swine collected between May 2011 and August 2012 from 3 cities/provinces in China. Results A total of 1003 samples, including 326 fecal, 351 small intestinal contents and 326 colon contents samples, was analyzed. Two hundred and fifty five samples were stx-positive by PCR and 93 STEC isolates were recovered from 62 stx-positive samples. Twelve O serogroups and 19 O:H serotypes including 6 serotypes (O100:H20/[H20], O143:H38/[H38], O87:H10, O172:H30/[H30], O159:H16, O9:H30/[H30]) rarely found in swine and ruminants were identified. All 93 STEC isolates harbored stx2 only, all of which were stx2e subtype including 1 isolate being a new variant of stx2e. 53.76%, 15.05% and 2.15% STEC isolates carried astA, hlyA and ehxA respectively. Four STEC isolates harbored the high-pathogenicity island. Of the 15 adherence-associated genes tested, 13 (eae, efa1, iha, lpfAO113, lpfAO157/OI-154, lpfAO157/OI-141, toxB, saa, F4, F5, F6, F17 or F41) were all absent while 2 (paa and F18) were present in 7 and 4 STEC isolates respectively. The majority of the isolates were resistant to tetracycline (79.57%), nalidixic acid (78.49%), trimethoprim-sulfamethoxazole (73.12%) and kanamycin (55.91%). The STEC isolates were divided into 63 pulsed-field gel electrophoresis patterns and 21 sequence types (STs). Isolates of the same STs generally showed the same or similar drug resistance patterns. A higher proportion of STEC isolates from Chongqing showed multidrug resistance with one ST (ST3628) resistant to 14 antimicrobials. Conclusions Our results indicate that swine is a significant reservoir of STEC strains in China. Based on comparison by serotypes and sequence types with human strains and presence of virulence genes, the swine STEC may have a low potential to cause human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
| |
Collapse
|