1
|
N’Djetchi MK, Ilboudo H, Koffi M, Kaboré J, Kaboré JW, Kaba D, Courtin F, Coulibaly B, Fauret P, Kouakou L, Ravel S, Deborggraeve S, Solano P, De Meeûs T, Bucheton B, Jamonneau V. The study of trypanosome species circulating in domestic animals in two human African trypanosomiasis foci of Côte d'Ivoire identifies pigs and cattle as potential reservoirs of Trypanosoma brucei gambiense. PLoS Negl Trop Dis 2017; 11:e0005993. [PMID: 29045405 PMCID: PMC5662240 DOI: 10.1371/journal.pntd.0005993] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/30/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023] Open
Abstract
Background Important control efforts have led to a significant reduction of the prevalence of human African trypanosomiasis (HAT) in Côte d’Ivoire, but the disease is still present in several foci. The existence of an animal reservoir of Trypanosoma brucei gambiense may explain disease persistence in these foci where animal breeding is an important source of income but where the prevalence of animal African trypanosomiasis (AAT) is unknown. The aim of this study was to identify the trypanosome species circulating in domestic animals in both Bonon and Sinfra HAT endemic foci. Methodology/Principal findings 552 domestic animals (goats, pigs, cattle and sheep) were included. Blood samples were tested for trypanosomes by microscopic observation, species-specific PCR for T. brucei sl, T. congolense, T. vivax and subspecies-specific PCR for T. b. gambiense and T. b. gambiense immune trypanolysis (TL). Infection rates varied significantly between animal species and were by far the highest in pigs (30%). T. brucei s.l was the most prevalent trypanosome species (13.7%) followed by T. congolense. No T. b. gambiense was identified by PCR while high TL positivity rates were observed using T. b. gambiense specific variants (up to 27.6% for pigs in the Bonon focus). Conclusion This study shows that domestic animals are highly infected by trypanosomes in the studied foci. This was particularly true for pigs, possibly due to a higher exposure of these animals to tsetse flies. Whereas T. brucei s.l. was the most prevalent species, discordant results were obtained between PCR and TL regarding T. b. gambiense identification. It is therefore crucial to develop better tools to study the epidemiological role of potential animal reservoir for T. b. gambiense. Our study illustrates the importance of “one health” approaches to reach HAT elimination and contribute to AAT control in the studied foci. In Africa, significant efforts to control human African trypanosomiasis (HAT) over the past three decades have drastically reduced the prevalence of the disease and elimination seems today an achievable goal. However, potential animal reservoirs of Trypanosoma brucei gambiense may compromise this ambitious objective. In the Bonon and Sinfra HAT endemic foci in Côte d’Ivoire, no recent data are available about the prevalence of animal African trypanosomiasis (AAT). The aim of this study was to identify trypanosomes circulating in domestic animals in these two HAT foci using serological, parasitological and molecular tools. We showed that T. brucei s.l. and T. congolense were the most prevalent trypanosome species and that pigs and cattle were the most infected animals. Discordant results were observed between the T. b. gambiense specific molecular and serological tools and the presence of an animal reservoir for T. b. gambiense remains unclear. Nevertheless, improved control strategies can be proposed based on this study to reach HAT elimination and contribute to AAT control in the study areas.
Collapse
Affiliation(s)
- Martial Kassi N’Djetchi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Hamidou Ilboudo
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Mathurin Koffi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Jacques Kaboré
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
- Unité de Formation et de Recherche Sciences et Techniques, Université Nazi Boni, Bobo-Dioulasso, Burkina-Faso
| | - Justin Windingoudi Kaboré
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Dramane Kaba
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Fabrice Courtin
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Bamoro Coulibaly
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Pierre Fauret
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Lingué Kouakou
- Programme National d’Elimination de la Trypanosomose Humaine Africaine, Ministère de la Santé et de l’Hygiène Publique, Abidjan, Côte d’Ivoire
| | - Sophie Ravel
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Stijn Deborggraeve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Philippe Solano
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Thierry De Meeûs
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Bruno Bucheton
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Vincent Jamonneau
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
- * E-mail:
| |
Collapse
|
2
|
Saeed AF, Wang R, Wang S. Microsatellites in Pursuit of Microbial Genome Evolution. Front Microbiol 2016; 6:1462. [PMID: 26779133 PMCID: PMC4700210 DOI: 10.3389/fmicb.2015.01462] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 12/07/2015] [Indexed: 12/27/2022] Open
Abstract
Microsatellites or short sequence repeats are widespread genetic markers which are hypermutable 1-6 bp long short nucleotide motifs. Significantly, their applications in genetics are extensive due to their ceaseless mutational degree, widespread length variations and hypermutability skills. These features make them useful in determining the driving forces of evolution by using powerful molecular techniques. Consequently, revealing important questions, for example, what is the significance of these abundant sequences in DNA, what are their roles in genomic evolution? The answers of these important questions are hidden in the ways these short motifs contributed in altering the microbial genomes since the origin of life. Even though their size ranges from 1 -to- 6 bases, these repeats are becoming one of the most popular genetic probes in determining their associations and phylogenetic relationships in closely related genomes. Currently, they have been widely used in molecular genetics, biotechnology and evolutionary biology. However, due to limited knowledge; there is a significant gap in research and lack of information concerning hypermutational mechanisms. These mechanisms play a key role in microsatellite loci point mutations and phase variations. This review will extend the understandings of impacts and contributions of microsatellite in genomic evolution and their universal applications in microbiology.
Collapse
Affiliation(s)
- Abdullah F. Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | | | | |
Collapse
|
3
|
Koffi M, De Meeûs T, Séré M, Bucheton B, Simo G, Njiokou F, Salim B, Kaboré J, MacLeod A, Camara M, Solano P, Belem AMG, Jamonneau V. Population Genetics and Reproductive Strategies of African Trypanosomes: Revisiting Available Published Data. PLoS Negl Trop Dis 2015; 9:e0003985. [PMID: 26491968 PMCID: PMC4619596 DOI: 10.1371/journal.pntd.0003985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Trypanosomatidae are a dangerous family of Euglenobionta parasites that threaten the health and economy of millions of people around the world. More precisely describing the population biology and reproductive mode of such pests is not only a matter of pure science, but can also be useful for understanding parasite adaptation, as well as how parasitism, specialization (parasite specificity), and complex life cycles evolve over time. Studying this parasite’s reproductive strategies and population structure can also contribute key information to the understanding of the epidemiology of associated diseases; it can also provide clues for elaborating control programs and predicting the probability of success for control campaigns (such as vaccines and drug therapies), along with emergence or re-emergence risks. Population genetics tools, if appropriately used, can provide precise and useful information in these investigations. In this paper, we revisit recent data collected during population genetics surveys of different Trypanosoma species in sub-Saharan Africa. Reproductive modes and population structure depend not only on the taxon but also on the geographical location and data quality (absence or presence of DNA amplification failures). We conclude on issues regarding future directions of research, in particular vis-à-vis genotyping and sampling strategies, which are still relevant yet, too often, neglected issues.
Collapse
Affiliation(s)
- Mathurin Koffi
- Université Jean Lorougnon GUEDE, UFR Environnement-Santé, Laboratoire des Interactions Hôte-Microorganismes-Environnement et Evolution (LIHME), Daloa, Côte d'Ivoire
- * E-mail: (MK); (TDM)
| | - Thierry De Meeûs
- IRD, UMR 177 IRD-CIRAD INTERTRYP, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina-Faso
- IRD, UMR177 IRD-CIRAD INTERTRYP, Campus International de Baillarguet, TA A-17/G, Montpellier, France
- * E-mail: (MK); (TDM)
| | - Modou Séré
- IRD, UMR 177 IRD-CIRAD INTERTRYP, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina-Faso
| | - Bruno Bucheton
- IRD, UMR177 IRD-CIRAD INTERTRYP, Campus International de Baillarguet, TA A-17/G, Montpellier, France
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Conakry, Guinée
| | - Gustave Simo
- University of Dschang, Faculty of Sciences, Department of Biochemistry, Dschang, Cameroon
| | - Flobert Njiokou
- University of Yaoundé 1, Faculty of Sciences, Department of Animal Biology and Physiology, Yaoundé, Cameroon
| | - Bashir Salim
- University of Khartoum, Department of Parasitology, Faculty of Veterinary Medicine, Khartoum North, Sudan
- Parasites, Vectors and Vector-borne Diseases, Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | - Jacques Kaboré
- IRD, UMR 177 IRD-CIRAD INTERTRYP, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina-Faso
- Université Polytechnique de Bobo-Dioulasso, UFR Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Annette MacLeod
- University of Glasgow, Wellcome Centre for Molecular Parasitology, Henry Wellcome Building of Comparative Medicine, Glasgow, United Kingdom
| | - Mamadou Camara
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Conakry, Guinée
| | - Philippe Solano
- IRD, UMR177 IRD-CIRAD INTERTRYP, Campus International de Baillarguet, TA A-17/G, Montpellier, France
| | - Adrien Marie Gaston Belem
- Université Polytechnique de Bobo-Dioulasso, UFR Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Vincent Jamonneau
- IRD, UMR 177 IRD-CIRAD INTERTRYP, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina-Faso
| |
Collapse
|
4
|
Pyana PP, Sere M, Kaboré J, De Meeûs T, MacLeod A, Bucheton B, Van Reet N, Büscher P, Belem AMG, Jamonneau V. Population genetics of Trypanosoma brucei gambiense in sleeping sickness patients with treatment failures in the focus of Mbuji-Mayi, Democratic Republic of the Congo. INFECTION GENETICS AND EVOLUTION 2015; 30:128-133. [DOI: 10.1016/j.meegid.2014.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
|
5
|
Séré M, Kaboré J, Jamonneau V, Belem AMG, Ayala FJ, De Meeûs T. Null allele, allelic dropouts or rare sex detection in clonal organisms: simulations and application to real data sets of pathogenic microbes. Parasit Vectors 2014; 7:331. [PMID: 25027508 PMCID: PMC4223633 DOI: 10.1186/1756-3305-7-331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/05/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pathogens and their vectors are organisms whose ecology is often only accessible through population genetics tools based on spatio-temporal variability of molecular markers. However, molecular tools may present technical difficulties due to the masking of some alleles (allelic dropouts and/or null alleles), which tends to bias the estimation of heterozygosity and thus the inferences concerning the breeding system of the organism under study. This is especially critical in clonal organisms in which deviation from panmixia, as measured by Wright's FIS, can, in principle, be used to infer both the extent of clonality and structure in a given population. In particular, null alleles and allelic dropouts are locus specific and likely produce high variance of Wright's FIS across loci, as rare sex is expected to do. In this paper we propose a tool enabling to discriminate between consequences of these technical problems and those of rare sex. METHODS We have performed various simulations of clonal and partially clonal populations. We introduce allelic dropouts and null alleles in clonal data sets and compare the results with those that exhibit increasing rates of sexual recombination. We use the narrow relationship that links Wright's FIS to genetic diversity in purely clonal populations as assessment criterion, since this relationship disappears faster with sexual recombination than with amplification problems of certain alleles. RESULTS We show that the relevance of our criterion for detecting poorly amplified alleles depends partly on the population structure, the level of homoplasy and/or mutation rate. However, the interpretation of data becomes difficult when the number of poorly amplified alleles is above 50%. The application of this method to reinterpret published data sets of pathogenic clonal microbes (yeast and trypanosomes) confirms its usefulness and allows refining previous estimates concerning important pathogenic agents. CONCLUSION Our criterion of superimposing between the FIS expected under clonality and the observed FIS, is effective when amplification difficulties occur in low to moderate frequencies (20-30%).
Collapse
Affiliation(s)
- Modou Séré
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454 Bobo-Dioulasso 01, Burkina-Faso.
| | | | | | | | | | | |
Collapse
|