1
|
Dong Y, Ma P, Wang S, Wang L, Chen Y, Zhao F, Yang K, Zhang X, Zhao H, Li B, Geng R, Tang TS, Zheng Q, Zheng T. Tmco1-Deficient Mice Exhibit a High Incidence of Otitis Media Associated with Impaired Bone Homeostasis in the Middle Ear. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:690-704. [PMID: 39725295 DOI: 10.1016/j.ajpath.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024]
Abstract
Craniofacial dysmorphism, skeletal anomalies, and impaired intellectual development syndrome (CFSMR1; Online Inheritance in Man number 213980) is characterized by craniofacial dysmorphism, skeletal anomalies, and mental retardation. However, reports of hearing issues have been limited. To investigate hearing-related aspects of CFSMR1, Tmco1 knockout mice (Tmco1-/-) exhibiting similar symptoms to human patients were used in this study. Otitis media (OM) was discovered in approximately 80% of Tmco1-/- mice, which led to moderate conductive hearing loss at 3 months old and further progressed to deafness 2 months later. Pathology studies of Tmco1-/- mice revealed a thickened middle ear (ME) epithelium and pronounced inflammatory infiltrates in the ME cavity and Eustachian tube of Tmco1-/- OM mice. Micro-computed tomography scan of 5-month-old Tmco1-/- OM mice showed significantly reduced ME volume and ME malformation. Tartrate-resistant acid phosphatase and Runt-related transcription factor 2, receptor activator of NF-κB ligand expression in ME revealed increased osteoclast activity and significantly decreased bone formation, suggesting potential causes of ME malformation. This study represents the first report of the audiological characteristics and the elucidation of potential mechanisms in Tmco1-/- mice. It enriches our understanding of the phenotypes associated with CFSMR1 in the field of otology and provides a promising model for chronic OM with conductive hearing loss.
Collapse
Affiliation(s)
- Yaning Dong
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China; Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, China
| | - Peng Ma
- Department of Medical Genetics and Cell Biology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Lan Wang
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Yingying Chen
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Fangfang Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Keyan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Hongchun Zhao
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China; Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China.
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China.
| |
Collapse
|
2
|
Liu F, Jia Y, Zhao L, Xiao LN, Cheng X, Xiao Y, Zhang Y, Zhang Y, Yu H, Deng QE, Zhang Y, Feng Y, Wang J, Gao Y, Zhang X, Geng Y. Escin ameliorates CUMS-induced depressive-like behavior via BDNF/TrkB/CREB and TLR4/MyD88/NF-κB signaling pathways in rats. Eur J Pharmacol 2024; 984:177063. [PMID: 39426465 DOI: 10.1016/j.ejphar.2024.177063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder associated with brain inflammation and neuronal damage. Derived from the Aesculus chinensis Bunge fruit, escin has shown anti-inflammatory and neuroprotective effects. However, its potential as a treatment for MDD is unclear. This study investigates the antidepressant properties of escin using in vivo experimentation. The chronic unpredictable mild stress (CUMS) model was used to analyze the potential antidepressant effects and underlying mechanisms of escin. Wistar rats were exposed to CUMS for 35 consecutive days to induce MDD. The rats were then given either escin (1, 3, and 10 mg/kg) or fluoxetine (2 mg/kg) on a daily basis. Notably, escin significantly alleviated the depressive behaviors induced by CUMS, as evaluated through a series of behavioral assessments. Moreover, escin administration reduced TNF-α, IL-1β, and IL-6 levels in the hippocampus. It also decreased serum adrenal cortical hormone (ACTH) and corticosterone (CORT) levels while increasing 5-HT and Brain-derived neurotrophic factor (BDNF) levels in the CUMS rats, as measured by the enzyme-linked immunosorbent assay (ELISA). Pathological changes in the hippocampal regions were identified through Nissl staining, and Western blotting was used to quantify the protein levels of BDNF, TrkB, CREB, TLR4, MyD88, and NF-κB. Escin mitigated neuronal injury, elevated TrkB, BDNF, and CREB, and reduced TLR4, MyD88, and NF-κB protein levels in CUMS rats. The data from this study suggest that escin holds the potential for alleviating depression-like symptoms induced by CUMS. This effect may be mediated through the modulation of two signaling pathways, BDNF/TrkB/CREB and TLR4/MyD88/NF-κB.
Collapse
Affiliation(s)
- Fengjiao Liu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Yaxin Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Liwei Zhao
- Science and Technology Office, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Li-Na Xiao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Xizhen Cheng
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yingying Xiao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Ying Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Yuling Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Huimin Yu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Qiao-En Deng
- The Eighth Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050081, China
| | - Yuanyuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Yimeng Feng
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Junfang Wang
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yonggang Gao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China; Department of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, 050091, China.
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, 050091, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050091, China.
| | - Yunyun Geng
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China; Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Shijiazhuang, Hebei, 050091, China.
| |
Collapse
|
3
|
Pathogenic Effects of Single or Mixed Infections of Eimeria mitis, Eimeria necatrix, and Eimeria tenella in Chickens. Vet Sci 2022; 9:vetsci9120657. [PMID: 36548818 PMCID: PMC9783262 DOI: 10.3390/vetsci9120657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Avian Eimeria species vary in their replication location, fecundity, and pathogenicity. They are required to complete the development within the limited space of host intestines, and some synergistic or antagonistic effects occur among different Eimeria species. This study evaluated the impact of Eimeria mitis on the outcome of Eimeria necatrix or Eimeria tenella challenge infection. The severity of E. mitis/E. necatrix and E. mitis/E. tenella mixed infections were quantified by growth performance evaluation, survival rate analysis, lesion scoring, blood stool scoring, and oocyst output counting. The presence of E. mitis exacerbated the outcome of co-infection with E. tenella, causing high mortality, intestinal lesion score, and oocyst production. However, E. mitis/E. tenella co-infection had little impact on the body weight gain compared to individual E. tenella infection. In addition, the presence of E. mitis appeared not to enhance the pathogenicity of E. necatrix, although it tends to inhibit the growth of challenged birds and facilitate oocyst output and mortality in an E. mitis/E. necatrix co-infection model. Collectively, the results suggested a synergistic relationship between E. mitis and E. tenella/E. necatrix when sharing the same host. The presence of E. mitis contributed to disease pathology induced by E. tenella and might also advance the impact of E. necatrix in co-infections. These observations indicate the importance of accounting for differences in the relationships among different Eimeria species when using mixed infection models.
Collapse
|
4
|
Yan B, Xie D, Wu Y, Wang S, Zhang X, Zhao T, Liu L, Ma P, Li G, Yang Y, Zhao Y, Zheng T, Geng R, Li B, Zheng Q. Ferroptosis is involved in PGPS-induced otitis media in C57BL/6 mice. Cell Death Discov 2022; 8:217. [PMID: 35449198 PMCID: PMC9023543 DOI: 10.1038/s41420-022-01025-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Otitis media (OM) is a common disease that can cause hearing loss in children. Currently, the main clinical treatment for OM is antibiotics, but the overuse of antibiotics might lead to bacterial resistance, which is a worldwide public health challenge. Studying the pathogenesis of OM will help us develop new effective treatments. Ferroptosis is one type of programmed cell death characterized by the occurrence of lipid peroxidation driven by iron ions. Many studies have shown that ferroptosis is associated with infectious diseases. It is presently unclear whether ferroptosis is involved in the pathogenesis of OM. In this study, we explored the relationship between ferroptosis and OM by PGPS-induced OM in C57BL/6 mice and treating the induced OM with ferroptosis inhibitors deferoxamine (DFO), Ferrostatin-1 (Fer-1), and Liperoxstatin-1 (Lip-1). We examined the expression of ferroptosis-related proteins acyl-CoA synthetase long chain family member 4 (ACSL4) and prostaglandin-endoperoxide synthase 2 (Cox2), glutathione peroxidase 4 (GPX4) protein as well as lipid peroxidation markers 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA). The results showed that in PGPS-induced OM model mice, several ferroptosis-related proteins including ACSL4 and Cox2 were up-regulated compared to mice treated with saline. Meanwhile, a ferroptosis-related protein GPX4 was down-regulated upon PGPS treatment. The DFO treatment in PGPS-inoculated mice effectively inhibited the development of OM. The inhibitors treatment caused a significant decrease in the expression of ACSL4, Cox2, 4 HNE, MDA, reduction in free iron. Meanwhile, the ferroptosis inhibitors treatment caused increase in the expression of inflammation-related factors tumor necrosis factor-α (TNF-α) and antioxidant protein GPX4. Our results suggest that there is a crosstalk between ferroptosis signaling pathway and the pathogenesis of OM. Ferroptosis inhibition can alleviate PGPS-induced OM.
Collapse
Affiliation(s)
- Bin Yan
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
- Rehabilitation Medicine & Physical Therapy, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - Daoli Xie
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Yuancheng Wu
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Tong Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Luying Liu
- Department of Pathology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Peng Ma
- Department of Genetics, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Guqiang Li
- Rehabilitation Medicine & Physical Therapy, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - Ying Yang
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Yucheng Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China.
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China.
| | - Qingyin Zheng
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Magdy M, Elmowafy E, Elassal M, Ishak RA. Localized drug delivery to the middle ear: Recent advances and perspectives for the treatment of middle and inner ear diseases. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Xie D, Zhao T, Zhang X, Kui L, Wang Q, Wu Y, Zheng T, Ma P, Zhang Y, Molteni H, Geng R, Yang Y, Li B, Zheng QY. Autophagy Contributes to the Rapamycin-Induced Improvement of Otitis Media. Front Cell Neurosci 2022; 15:753369. [PMID: 35153674 PMCID: PMC8832103 DOI: 10.3389/fncel.2021.753369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/31/2021] [Indexed: 12/02/2022] Open
Abstract
Otitis media (OM) is a pervasive disease that involves hearing loss and severe complications. In our previous study, we successfully established a mouse model of human OM using Tlr2tm1Kir (TLR2-/-) mice with middle ear (ME) inoculation of streptococcal peptidoglycan-polysaccharide (PGPS). In this study, we found that hearing loss and OM infections in OM mice were significantly alleviated after treatment with rapamycin (RPM), a widely used mechanistic target of RPM complex 1 (mTORC1) inhibitor and autophagy inducer. First of all, we tested the activity of mTORC1 by evaluating p-S6, Raptor, and mTOR protein expression. The data suggested that the protein expression level of p-S6, Raptor and mTOR are decreased in TLR2-/- mice after the injection of PGPS. Furthermore, our data showed that both the autophagosome protein LC3-II, Beclin-1, ATG7, and autophagy substrate protein p62 accumulated at higher levels in mice with OM than in OM-negative mice. The expression of lysosomal-associated proteins LAMP1, Cathepsin B, and Cathepsin D increased in the OM mice compared with OM-negative mice. Rab7 and Syntaxin 17, which is necessary for the fusion of autophagosomes with lysosomes, are reduced in the OM mice. In addition, data also described that the protein expression level of p-S6, mTOR and Raptor are lower than PGPS group after RPM treatment. The accumulation of LC3-II, Beclin-1, and ATG7 are decreased, and the expression of Rab7 and Syntaxin 17 are increased significantly after RPM treatment. Our results suggest that autophagy impairment is involved in PGPS-induced OM and that RPM improves OM at least partly by relieving autophagy impairment. Modulating autophagic activity by RPM may be a possible effective treatment strategy for OM.
Collapse
Affiliation(s)
- Daoli Xie
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tong Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Xiaolin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Lihong Kui
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Qin Wang
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Yuancheng Wu
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Peng Ma
- Department of Genetics, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Zhang
- Department of Otolaryngology, Head and Neck Surgery, Second Affiliated Hospital, Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Helen Molteni
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Ying Yang
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Qing Yin Zheng
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
7
|
Massa HM, Spann KM, Cripps AW. Innate Immunity in the Middle Ear Mucosa. Front Cell Infect Microbiol 2021; 11:764772. [PMID: 34778109 PMCID: PMC8586084 DOI: 10.3389/fcimb.2021.764772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Otitis media (OM) encompasses a spectrum of clinical presentations ranging from the readily identifiable Acute OM (AOM), which is characterised by otalgia and fever, to chronic otitis media with effusion (COME) where impaired hearing due to middle ear effusion may be the only clinical symptom. Chronic suppurative OM (CSOM) presents as a more severe form of OM, involving perforation of the tympanic membrane. The pathogenesis of OM in these varied clinical presentations is unclear but activation of the innate inflammatory responses to viral and/or bacterial infection of the upper respiratory tract performs an integral role. This localised inflammatory response can persist even after pathogens are cleared from the middle ear, eustachian tubes and, in the case of respiratory viruses, even the nasal compartment. Children prone to OM may experience an over exuberant inflammatory response that underlies the development of chronic forms of OM and their sequelae, including hearing impairment. Treatments for chronic effusive forms of OM are limited, with current therapeutic guidelines recommending a "watch and wait" strategy rather than active treatment with antibiotics, corticosteroids or other anti-inflammatory drugs. Overall, there is a clear need for more targeted and effective treatments that either prevent or reduce the hyper-inflammatory response associated with chronic forms of OM. Improved treatment options rely upon an in-depth understanding of OM pathogenesis, particularly the role of the host innate immune response during acute OM. In this paper, we review the current literature regarding the innate immune response within the middle ear to bacterial and viral otopathogens alone, and as co-infections. This is an important consideration, as the role of respiratory viruses as primary pathogens in OM is not yet fully understood. Furthermore, increased reporting from PCR-based diagnostics, indicates that viral/bacterial co-infections in the middle ear are more common than bacterial infections alone. Increasingly, the mechanisms by which viral/bacterial co-infections may drive or maintain complex innate immune responses and inflammation during OM as a chronic response require investigation. Improved understanding of the pathogenesis of chronic OM, including host innate immune response within the middle ear is vital for development of improved diagnostic and treatment options for our children.
Collapse
Affiliation(s)
- Helen M Massa
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kirsten M Spann
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Allan W Cripps
- Menzies Health Institute Queensland, School of Medicine, Griffith University, Gold Coast, QLD, Australia.,School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
8
|
Yang Y, Wang L, Yuan M, Yu Q, Fu F. Anti-Inflammatory and Gastroprotective Effects of Escin. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20982111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Escin is a triterpenoid saponin extracted from the fruit of Aesculus wilsonii Rehd. and Aesculus hippocastanum (Hippocastanaceae). Clinically, it is widely used in the treatment of edema induced by either trauma or surgery, as well as treating chronic venous insufficiency. The anti-inflammatory and antiedema effects of escin have been extensively investigated. This article systematically reviews the effects of escin on inflammation and gastrointestinal diseases, including its role in inflammation, as an antioxidant, and in inhibiting gastric acid secretion and promoting gastrointestinal movement, especially, the molecular mechanism. The advantages and potential uses of escin have also been discussed.
Collapse
Affiliation(s)
- Yunqi Yang
- Department of Pharmacology, School of Pharmacy, University of Yantai, P. R. China
| | - Linlin Wang
- Department of Pharmacology, School of Pharmacy, University of Yantai, P. R. China
| | - Man Yuan
- Department of Pharmacology, School of Pharmacy, University of Yantai, P. R. China
| | - Qi Yu
- Department of Pharmacology, School of Pharmacy, University of Yantai, P. R. China
| | - Fenghua Fu
- Department of Pharmacology, School of Pharmacy, University of Yantai, P. R. China
| |
Collapse
|
9
|
Zhao H, Wang Y, Li B, Zheng T, Liu X, Hu BH, Che J, Zhao T, Chen J, Hatzoglou M, Zhang X, Fan Z, Zheng Q. Role of Endoplasmic Reticulum Stress in Otitis Media. Front Genet 2020; 11:495. [PMID: 32536938 PMCID: PMC7267009 DOI: 10.3389/fgene.2020.00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 04/20/2020] [Indexed: 11/19/2022] Open
Abstract
Endoplasmic reticulum (ER) stress occurs in many inflammatory responses. Here, we investigated the role of ER stress and its associated apoptosis in otitis media (OM) to elucidate the mechanisms of OM and the signaling crosstalk between ER stress and other cell damage pathways, including inflammatory cytokines and apoptosis. We examined the expression of inflammatory cytokine- and ER stress-related genes by qRT-PCR, Western blotting, and immunohistochemistry (IHC) in the middle ear of C57BL/6J mice after challenge with peptidoglycan polysaccharide (PGPS), an agent inducing OM. We also evaluated the effect of the suppression of ER stress with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor. The study revealed the upregulation of ER stress- and apoptosis-related gene expression after the PGPS treatment, specifically ATF6, CHOP, BIP, caspase-12, and caspase-3. TUDCA treatment of PGPS-treated mice decreased OM; reduced the expression of CHOP, BIP, and caspase 3; and significantly decreased the proinflammatory gene expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These results suggest that PGPS triggers ER stress and downstream proinflammatory gene expression in OM and that inhibition of ER stress alleviates OM. We propose that ER stress plays a critical role in inflammation and cell death, leading to the development of OM and points to ER stress inhibition as a potential therapeutic approach for the prevention of OM.
Collapse
Affiliation(s)
- Hongchun Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Yanfei Wang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Xiuzhen Liu
- Clinical Laboratory, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Juan Che
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Tong Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Jun Chen
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Maria Hatzoglou
- Department of Genetics, Case Western Reserve University, Cleveland, OH, United States
| | - Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingyin Zheng
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
10
|
Thornton RB, Hakansson A, Hood DW, Nokso-Koivisto J, Preciado D, Riesbeck K, Richmond PC, Su YC, Swords WE, Brockman KL. Panel 7 - Pathogenesis of otitis media - a review of the literature between 2015 and 2019. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109838. [PMID: 31879085 PMCID: PMC7062565 DOI: 10.1016/j.ijporl.2019.109838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To perform a comprehensive review of the literature from July 2015 to June 2019 on the pathogenesis of otitis media. Bacteria, viruses and the role of the microbiome as well as the host response are discussed. Directions for future research are also suggested. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS PubMed was searched for any papers pertaining to OM pathogenesis between July 2015 and June 2019. If in English, abstracts were assessed individually for their relevance and included in the report. Members of the panel drafted the report based on these searches and on new data presented at the 20th International Symposium on Recent Advances in Otitis Media. CONCLUSIONS The main themes that arose in OM pathogenesis were around the need for symptomatic viral infections to develop disease. Different populations potentially having different mechanisms of pathogenesis. Novel bacterial otopathogens are emerging and need to be monitored. Animal models need to continue to be developed and used to understand disease pathogenesis. IMPLICATIONS FOR PRACTICE The findings in the pathogenesis panel have several implications for both research and clinical practice. The most urgent areas appear to be to continue monitoring the emergence of novel otopathogens, and the need to develop prevention and preventative therapies that do not rely on antibiotics and protect against the development of the initial OM episode.
Collapse
Affiliation(s)
- R B Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia; School of Biomedical Sciences, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia
| | - A Hakansson
- Experimental Infection Medicine, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - D W Hood
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - J Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - D Preciado
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA; Division of Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - K Riesbeck
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - P C Richmond
- School of Medicine, Division of Paediatrics, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia; Perth Children's Hospital, Perth, Western Australia, Australia
| | - Y C Su
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - W E Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - K L Brockman
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
11
|
Animal models of acute otitis media - A review with practical implications for laboratory research. Eur Ann Otorhinolaryngol Head Neck Dis 2018; 135:183-190. [PMID: 29656888 DOI: 10.1016/j.anorl.2017.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 11/23/2022]
Abstract
Considerable animal research has focused on developing new strategies for the prevention and treatment of acute otitis media (AOM). Several experimental models of AOM have thus been developed. A PubMed search of the English literature was conducted from 1975 to July 2016 using the search terms "animal model" and "otitis media" from which 91 published studies were included for analysis, yielding 123 animal models. The rat, mouse and chinchilla are the preferred animals for experimental AOM models with their individual advantages and disadvantages. The most common pathogens used to create AOM are Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. Streptococcus pneumoniae (types 3, 23 and 6A) and non-typeable Haemophilus influenzae (NTHi) are best options for inoculation into rat and mouse models. Adding viral pathogens such as RSV and Influenza A virus, along with creating ET dysfunction, are useful adjuncts in animal models of AOM. Antibiotic prophylaxis may interfere with the inflammatory response without a significant reduction in animal mortality.
Collapse
|
12
|
Wang Q, Zhao H, Zheng T, Wang W, Zhang X, Wang A, Li B, Wang Y, Zheng Q. Otoprotective effects of mouse nerve growth factor in DBA/2J mice with early-onset progressive hearing loss. J Neurosci Res 2017; 95:1937-1950. [PMID: 28345280 DOI: 10.1002/jnr.24056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
As it displays progressive hair-cell loss and degeneration of spiral ganglion neurons (SGNs) characterized by early-onset progressive hearing loss (ePHL), DBA/2J is an inbred mouse strain widely used in hearing research. Mouse nerve growth factor (mNGF), as a common exogenous nerve growth factor (NGF), has been studied extensively for its ability to promote neuronal survival and growth. To determine whether mNGF can ameliorate progressive hearing loss (PHL) in DBA/2J mice, saline or mNGF was given to DBA/2J mice of either sex by daily intramuscular injection from the 1st to the 9th week after birth. At 5, 7, and 9 weeks of age, in comparison with vehicle groups, mNGF groups experienced decreased auditory-evoked brainstem response (ABR) thresholds and increased distortion product otoacoustic emission (DPOAE) amplitudes, the prevention of hair cell loss, and the inhibition of apoptosis of SGNs. Downregulation of Bak/Bax and Caspase genes and proteins in cochleae of mice receiving the mNGF treatment was detected by real-time PCR, Western blot, and immunohistochemistry. This suggests that the Bak-dependent mitochondrial apoptosis pathway may be involved in the otoprotective mechanism of mNGF in progressive hearing loss of DBA/2J mice. Our results demonstrate that mNGF can act as an otoprotectant in the DBA/2J mice for the early intervention of PHL and, thus, could become of great value in clinical applications. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qingzhu Wang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, 264003, Shandong, PR China.,Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, PR China
| | - Hongchun Zhao
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, PR China
| | - Tihua Zheng
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Wenjun Wang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, 264003, Shandong, PR China.,Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, PR China.,Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, PR China
| | - Andi Wang
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bo Li
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Yanfei Wang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, 264003, Shandong, PR China.,Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, PR China
| | - Qingyin Zheng
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
13
|
Anti-Inflammation of Natural Components from Medicinal Plants at Low Concentrations in Brain via Inhibiting Neutrophil Infiltration after Stroke. Mediators Inflamm 2016; 2016:9537901. [PMID: 27688603 PMCID: PMC5027307 DOI: 10.1155/2016/9537901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 12/17/2022] Open
Abstract
Inflammation after stroke consists of activation of microglia/astrocytes in situ and infiltration of blood-borne leukocytes, resulting in brain damage and neurological deficits. Mounting data demonstrated that most natural components from medicinal plants had anti-inflammatory effects after ischemic stroke through inhibiting activation of resident microglia/astrocytes within ischemic area. However, it is speculated that this classical activity cannot account for the anti-inflammatory function of these natural components in the cerebral parenchyma, where they are detected at very low concentrations due to their poor membrane permeability and slight leakage of BBB. Could these drugs exert anti-inflammatory effects peripherally without being delivered across the BBB? Factually, ameliorating blood-borne neutrophil recruitment in peripheral circulatory system has been proved to reduce ischemic damage and improve outcomes. Thus, it is concluded that if drugs could achieve effective concentrations in the cerebral parenchyma, they can function via crippling resident microglia/astrocytes activation and inhibiting neutrophil infiltration, whereas the latter will be dominating when these drugs localize in the brain at a low concentration. In this review, the availability of some natural components crossing the BBB in stroke will be discussed, and how these drugs lead to improvements in stroke through inhibition of neutrophil rolling, adhesion, and transmigration will be illustrated.
Collapse
|