1
|
Sives S, Keep S, Bickerton E, Vervelde L. Revealing Novel-Strain-Specific and Shared Epitopes of Infectious Bronchitis Virus Spike Glycoprotein Using Chemical Linkage of Peptides onto Scaffolds Precision Epitope Mapping. Viruses 2023; 15:2279. [PMID: 38005955 PMCID: PMC10675791 DOI: 10.3390/v15112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The avian coronavirus, infectious bronchitis virus (IBV), is an economically important infectious disease affecting chickens, with a diverse range of serotypes found globally. The major surface protein, spike (S), has high diversity between serotypes, and amino acid differences in the S1 sub-unit are thought to be responsible for poor cross-protection afforded by vaccination. Here, we attempt to address this, by using epitope mapping technology to identify shared and serotype-specific immunogenic epitopes of the S glycoprotein of three major circulating strains of IBV, M41, QX, and 4/91, via CLIPS peptide arrays based on peptides from the S1 sub-units. The arrays were screened with sera from chickens immunised with recombinant IBV, based on Beau-R backbone expressing heterologous S, generated in two independent vaccination/challenge trials. The screening of sera from rIBV vaccination experiments led to the identification of 52 immunogenic epitopes on the S1 of M41, QX, and 4/91. The epitopes were assigned into six overlapping epitope binding regions. Based on accessibility and location in the hypervariable regions of S, three sequences, 25YVYYYQSAFRPPNGWHLQGGAYAVVNSTN54, 67TVGVIKDVYNQSVASI82, and 83AMTVPPAGMSWSVS96, were selected for further investigation, and synthetic peptide mimics were recognised by polyclonal sera. These epitopes may have the potential to contribute towards a broader cross-protective IBV vaccine.
Collapse
Affiliation(s)
- Samantha Sives
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Sarah Keep
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK
| | | | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| |
Collapse
|
2
|
Li S, Chen W, Shen Y, Xia J, Fan S, Li N, Luo Y, Han X, Cui M, Zhao Y, Huang Y. Molecular characterization of infectious bronchitis virus in Southwestern China for the protective efficacy evaluation of four live vaccine strains. Vaccine 2021; 40:255-265. [PMID: 34865877 DOI: 10.1016/j.vaccine.2021.11.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
The high mutation rate of infectious bronchitis virus (IBV) poses a significant threat to the protective efficacy of vaccines. This study aimed at analyzing the S1 genes of IBV field strains isolated in Southwestern China from 2018 to 2020, assessing the pathogenicity of four dominating strains, and evaluating the protective efficacy of four commercial vaccine strains against the endemic representative strains. Thirty-two field strains of IBV were isolated in Southwestern China from 2018 to 2020. Phylogenetic analysis of their S1 genes revealed the nucleotide homology ranged from 64.6% to 100%, and belonged to five genotypes [GI-19 (QX, 53.13%), GI-28 (LDT3-A,15.63%), GI-7 (TW, 12.50%), GI-1 (Mass, 6.23%), GVI-1 (TC07-2, 6.25%)], and two variant groups [variant-3 (3.13%) and variant-5 (3.13%)]. Recombination events between field and vaccine strains or between field strains were identified in the S1 genes of eight IBV field strains. The CK/CH/YNKM/191128 and CK/CH/CQBS/191203 strains of GI-19 showed morbidity rates of 66.7% and 73.7%, respectively, and mortality rates of 13.3% and 33.3%, respectively. Besides, the CK/CH/SCYC/191030 and CK/CH/GZGY/191021 strains of GI-28 caused morbidity rates of 60% and 86.7%, respectively, and mortality rates of 33.3%. The protective efficacy of the four commercial live vaccine strains (4/91, FNO-E55, LDT3-A, and QXL87) ranged from 70% - 100% and reduced tissue lesions against CK/CH/GZGY/191021 and CK/CH/CQBS/191203 strains. LDT3-A strain was the most effective one but still could not completely prohibit IBV shedding. These findings provide a reference for IBV molecular evolution analysis and control of IB.
Collapse
Affiliation(s)
- Shuyun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan 611130, China
| | - Wen Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yuxi Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan 611130, China
| | - Shunyi Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan 611130, China
| | - Nianning Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yuwen Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan 611130, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan 611130, China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yang Zhao
- Sichuan Dekon Food and Agriculture Group Co., Ltd, 32 First Section of Lingang Road, Shuangliu District, Chengdu, Sichuan 610225, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
3
|
Jara M, Crespo R, Roberts DL, Chapman A, Banda A, Machado G. Development of a Dissemination Platform for Spatiotemporal and Phylogenetic Analysis of Avian Infectious Bronchitis Virus. Front Vet Sci 2021; 8:624233. [PMID: 34017870 PMCID: PMC8129014 DOI: 10.3389/fvets.2021.624233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/27/2021] [Indexed: 11/13/2022] Open
Abstract
Infecting large portions of the global poultry populations, the avian infectious bronchitis virus (IBV) remains a major economic burden in North America. With more than 30 serotypes globally distributed, Arkansas, Connecticut, Delaware, Georgia, and Massachusetts are among the most predominant serotypes in the United States. Even though vaccination is widely used, the high mutation rate exhibited by IBV is continuously triggering the emergence of new viral strains and hindering control and prevention measures. For that reason, targeted strategies based on constantly updated information on the IBV circulation are necessary. Here, we sampled IBV-infected farms from one US state and collected and analyzed 65 genetic sequences coming from three different lineages along with the immunization information of each sampled farm. Phylodynamic analyses showed that IBV dispersal velocity was 12.3 km/year. The majority of IBV infections appeared to have derived from the introduction of the Arkansas DPI serotype, and the Arkansas DPI and Georgia 13 were the predominant serotypes. When analyzed against IBV sequences collected across the United States and deposited in the GenBank database, the most likely viral origin of our sequences was from the states of Alabama, Georgia, and Delaware. Information about vaccination showed that the MILDVAC-MASS+ARK vaccine was applied on 26% of the farms. Using a publicly accessible open-source tool for real-time interactive tracking of pathogen spread and evolution, we analyzed the spatiotemporal spread of IBV and developed an online reporting dashboard. Overall, our work demonstrates how the combination of genetic and spatial information could be used to track the spread and evolution of poultry diseases, providing timely information to the industry. Our results could allow producers and veterinarians to monitor in near-real time the current IBV strain circulating, making it more informative, for example, in vaccination-related decisions.
Collapse
Affiliation(s)
- Manuel Jara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Rocio Crespo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - David L Roberts
- Department of Computer Science North Carolina State University, Raleigh, NC, United States
| | - Ashlyn Chapman
- Department of Computer Science North Carolina State University, Raleigh, NC, United States
| | - Alejandro Banda
- Poultry Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Pearl, MS, United States
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Houta MH, Hassan KE, El-Sawah AA, Elkady MF, Kilany WH, Ali A, Abdel-Moneim AS. The emergence, evolution and spread of infectious bronchitis virus genotype GI-23. Arch Virol 2021; 166:9-26. [PMID: 33416996 PMCID: PMC7791962 DOI: 10.1007/s00705-020-04920-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/01/2020] [Indexed: 12/03/2022]
Abstract
Avian infectious bronchitis is a contagious viral disease, caused by avian infectious bronchitis virus (IBV), that leads to severe losses in the poultry industry all over the world. Since the 1950s, IBV has circulated in the Middle East and North Africa, and no tangible evidence has shown any effects of measures taken to control its spread or evolution. Furthermore, new IBV variants are continually discovered. Although several genetic studies on IBV have been conducted, many IBV strains from this region have either been misclassified or remain unclassified. The genotype 23 (GI-23) variant emerged and has prevailed in the Middle East by continuously evolving through inter- and/or intra-genotypic recombination. The GI-23 genotype is currently enzootic throughout Europe and Asia. Although many studies of protection against the circulating strains have been conducted, they have not been standardized according to regulatory requirements. In this review, we provide an overview of the evolution and genetic diversity of IBV genotypes and a genetic classification of IBV strains, with a focus on the GI-23 genotype. The high prevalence of IBV GI-23 strains necessitates the adoption of vaccination schemes using GI-23-based vaccines.
Collapse
Affiliation(s)
- Mohamed H Houta
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Kareem E Hassan
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Azza A El-Sawah
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Magdy F Elkady
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Walid H Kilany
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Dokki, P.O. Box 264, Giza, 12618, Egypt
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Ahmed S Abdel-Moneim
- Department of Virology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt. .,Department of Microbiology, College of Medicine, Taif University, Taif, 21944, Saudi Arabia.
| |
Collapse
|
5
|
Andoh K, Ashikaga K, Suenaga K, Endo S, Yamazaki K. Identification of Novel Linear Epitopes Located in the Infectious Bronchitis Virus Spike S2 Region. Avian Dis 2019; 62:210-217. [PMID: 29944406 DOI: 10.1637/11796-011518-reg.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We identified novel linear epitopes on the infectious bronchitis virus (IBV) spike S2 region. The conformational structure of the IBV spike protein was predicted from a homologous protein, human coronavirus NL63 spike. Although the obtained structure was incomplete, most of the IBV spike protein structure was predicted; the N-terminus of the S1 region could not be predicted due to its variability. In the model, the region located in the proximity of the fusion peptide appeared to be well conserved, and we evaluated the antigenicity of these domains, which are involved in the membrane fusion machinery. Western blotting revealed that IBV TM86 spike residues 686-723 were antigenic. Epitope mapping analysis using synthesized peptides revealed that IBV TM86 spike 669-685 (SNFSTGAFNISLLLTPP), 686-697 (SNPRGRSFIEDL), and 692-703 (SFIEDLLFTSVE) residues were major linear epitopes; two identified epitopes (686-697 and 692-703) were covered by the fusion peptide, and the other epitope (669-685) was adjacent to the fusion peptide. Although the identified epitopes are identically located as the neutralizing epitope in severe acute respiratory syndrome coronavirus, the recombinant protein that includes those epitopes could not elicit neutralizing antibodies against IBV. This is the first report describing IBV spike S2 epitopes located in the proximity of the fusion peptide, and it is suggested that the spike fusion machinery of IBV may differ from that of severe acute respiratory syndrome coronavirus, or, alternatively, IBV may have another mechanism to penetrate the cell membrane.
Collapse
Affiliation(s)
- Kiyohiko Andoh
- A Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto 860-8568, Japan
| | - Kanako Ashikaga
- A Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto 860-8568, Japan
| | - Kiyotaka Suenaga
- A Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto 860-8568, Japan
| | - Shun Endo
- A Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto 860-8568, Japan
| | - Kenichi Yamazaki
- A Animal Pharmaceuticals Division, Chemo-Sero-Therapeutic Research Institute, 1-6-1 Okubo, Kita-ku, Kumamoto, Kumamoto 860-8568, Japan
| |
Collapse
|
6
|
Saraiva GL, Santos MR, Pereira CG, Vidigal PMP, Fietto JLR, de Oliveira Mendes TA, Bressan GC, Soares-Martins JAP, de Almeida MR, Silva-Júnior A. Evaluation of the genetic variability found in Brazilian commercial vaccines for infectious bronchitis virus. Virus Genes 2018; 54:77-85. [PMID: 29128885 PMCID: PMC7089498 DOI: 10.1007/s11262-017-1515-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/17/2017] [Indexed: 11/02/2022]
Abstract
Infectious bronchitis virus (IBV) is currently one of the most important pathogens in the poultry industry. The H120 and Ma5 are the only viral strains approved by the Brazilian government as the constituent of vaccines. Despite the systematic vaccination in Brazil, IBV has not yet been controlled and diseases associated with this virus have been reported in vaccinated chickens. Here, we investigated the genetic variability of H120 and Ma5 strains present in the IBV vaccines from different Brazilian manufacturers. We performed DNA sequencing analyses of the S1 spike glycoprotein gene to investigate its genetic variability and the presence of viral subpopulations among vaccines, between batches, and also in each vaccine after a single passage was performed in chicken embryonated eggs. Our results revealed up to 13 amino acid substitutions among vaccines and some of them were localized in regions of the S1 glycoprotein that play a role in virus-host interaction. Secondary nucleotide peaks identified in the chromatogram for the S1 gene sequence revealed that all original vaccines (H120 and Ma5) were composed by different subpopulations of IBV. Moreover, new viral subpopulations were also found in vaccines after a single passage in chicken embryonated eggs. These findings indicate that H120 and Ma5 viral strains used in vaccines market in Brazil can still mutate very rapidly during replication, leading to amino acid substitutions in proteins involved in the stimulation of the immune response, such as the S1 glycoprotein. Therefore, our data suggest that the genetic variability of these viral strains should be taken into consideration to ensure an effective immune response against IBV.
Collapse
Affiliation(s)
- Giuliana Loreto Saraiva
- Laboratório de Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
- Laboratório de Infectologia Molecular Animal, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Marcus Rebouças Santos
- Laboratório de Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Claiton Gonçalves Pereira
- Laboratório de Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBiomol), Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Juliana Lopes Rangel Fietto
- Laboratório de Infectologia Molecular Animal, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Tiago Antonio de Oliveira Mendes
- Laboratório de Infectologia Molecular Animal, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Gustavo Costa Bressan
- Laboratório de Infectologia Molecular Animal, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Jamária A P Soares-Martins
- Department of Mathematics and Science, Waukesha County Technical College, 800 Main Street, Pewaukee, WI, 53072, USA
| | - Márcia Rogéria de Almeida
- Laboratório de Infectologia Molecular Animal, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Abelardo Silva-Júnior
- Laboratório de Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. PH Rolfs, s/n, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|