1
|
Olvera-Lucio FH, Riveros-Rosas H, Quintero-Martínez A, Hernández-Santoyo A. Tandem-repeat lectins: structural and functional insights. Glycobiology 2024; 34:cwae041. [PMID: 38857376 PMCID: PMC11186620 DOI: 10.1093/glycob/cwae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/05/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024] Open
Abstract
Multivalency in lectins plays a pivotal role in influencing glycan cross-linking, thereby affecting lectin functionality. This multivalency can be achieved through oligomerization, the presence of tandemly repeated carbohydrate recognition domains, or a combination of both. Unlike lectins that rely on multiple factors for the oligomerization of identical monomers, tandem-repeat lectins inherently possess multivalency, independent of this complex process. The repeat domains, although not identical, display slightly distinct specificities within a predetermined geometry, enhancing specificity, affinity, avidity and even oligomerization. Despite the recognition of this structural characteristic in recently discovered lectins by numerous studies, a unified criterion to define tandem-repeat lectins is still necessary. We suggest defining them multivalent lectins with intrachain tandem repeats corresponding to carbohydrate recognition domains, independent of oligomerization. This systematic review examines the folding and phyletic diversity of tandem-repeat lectins and refers to relevant literature. Our study categorizes all lectins with tandemly repeated carbohydrate recognition domains into nine distinct folding classes associated with specific biological functions. Our findings provide a comprehensive description and analysis of tandem-repeat lectins in terms of their functions and structural features. Our exploration of phyletic and functional diversity has revealed previously undocumented tandem-repeat lectins. We propose research directions aimed at enhancing our understanding of the origins of tandem-repeat lectin and fostering the development of medical and biotechnological applications, notably in the design of artificial sugars and neolectins.
Collapse
Affiliation(s)
- Francisco H Olvera-Lucio
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | - Héctor Riveros-Rosas
- Depto. Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | - Adrián Quintero-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | | |
Collapse
|
2
|
Võ TC, Lê HG, Kang JM, Naw H, Yoo WG, Myint MK, Quang HH, Na BK. Genetic polymorphism and natural selection of the erythrocyte binding antigen 175 region II in Plasmodium falciparum populations from Myanmar and Vietnam. Sci Rep 2023; 13:20025. [PMID: 37973970 PMCID: PMC10654615 DOI: 10.1038/s41598-023-47275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
Plasmodium falciparum erythrocyte binding antigen 175 (PfEBA-175) plays essential role in erythrocyte invasion by the parasite and is a leading vaccine candidate. However, its genetic diversity in global isolates is a concern in developing an universal vaccine incorporating this protein. This study aimed to investigate genetic polymorphisms and natural selection of pfeba-175 region II (RII) in Myanmar and Vietnam P. falciparum isolates. Vietnam pfeba-175 RII displayed a low genetic polymorphism, while Myanmar pfeba-175 RII showed high levels of genetic diversity across the region. Point mutations, deletion, and recombinations were main factors contributing to genetic diversities in P. falciparum populations. Global pfeba-175 RII revealed similar, but not identical, genetic polymorphisms and natural selection profiles. Despite profiles of amino acid substitutions differed among populations, five major amino acid changes (K279E, E403K, K481I, Q584K, and R664) were commonly detected in global pfeba-175 RII populations. Haplotype network and genetic differentiation analyses of global pfeba-175 RII populations demonstrated no geographical relationships. Non-neglectable level of genetic diversity was observed in global pfeba-175 RII populations, emphasizing the need to consider this when designing an effective vaccine based on this protein. This study underscores the importance of the continuous monitoring of genetic diversity of pfeba-175 RII in the global P. falciparum populations.
Collapse
Affiliation(s)
- Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Haung Naw
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Huynh Hong Quang
- Tropical Diseases Clinical and Treatment Research Department, Institute of Malariology, Parasitology, and Entomology Quy Nhon, Quy Nhon, Vietnam
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Science, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
3
|
Xing M, Yang N, Jiang N, Wang D, Sang X, Feng Y, Chen R, Wang X, Chen Q. A Sialic Acid-Binding Protein SABP1 of Toxoplasma gondii Mediates Host Cell Attachment and Invasion. J Infect Dis 2021; 222:126-135. [PMID: 32060530 PMCID: PMC7296849 DOI: 10.1093/infdis/jiaa072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
Many obligate intracellular apicomplexan parasites have adapted a distinct invasion mechanism involving a close interaction between the parasite ligands and the sialic acid (SA) receptor. We found that sialic acid binding protein-1 (SABP1), localized on the outer membrane of the zoonotic parasite Toxoplasma gondii, readily binds to sialic acid on the host cell surface. The binding was sensitive to neuraminidase treatment. Cells preincubated with recombinant SABP1 protein resisted parasite invasion in vitro. The parasite lost its invasion capacity and animal infectivity after the SABP1 gene was deleted, whereas complementation of the SABP1 gene restored the virulence of the knockout strain. These data establish the critical role of SABP1 in the invasion process of T. gondii. The previously uncharacterized protein, SABP1, facilitated T. gondii attachment and invasion via sialic acid receptors.
Collapse
Affiliation(s)
- Mengen Xing
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Dawei Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xinyi Wang
- College of Basic Education, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
4
|
Childs LM, Larremore DB. Network Models for Malaria: Antigens, Dynamics, and Evolution Over Space and Time. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
5
|
Ghoshal S, Chowdhury P, Ray S, Mitra M, Kanjilal SD, Sen S, Dasgupta AK, Sengupta S. Population genetic and biophysical evidences reveal that purifying selection shapes the genetic landscape of Plasmodium falciparum RH ligands in Chhattisgarh and West Bengal, India. Malar J 2020; 19:367. [PMID: 33054833 PMCID: PMC7557104 DOI: 10.1186/s12936-020-03433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
Background Reticulocyte binding protein-like homologs (RHs) are currently being evaluated as anti-erythrocytic stage vaccine targets against Plasmodium falciparum malaria. Present study explores the possible evolutionary drivers shaping the genetic organization of Pfrhs in Indian parasite population. It simultaneously evaluates a putative gain-of-function variant of PfRH5, a keystone member of PfRH family. Methods Receptor binding regions of Pfrh1, Pfrh2a/b, Pfrh4 and whole Pfrh5 were amplified using blood samples of P. falciparum malaria patients from Chhattisgarh and West Bengal and sequenced. Assembled sequences were analysed using MEGA7 and DnaSPv6. Binding affinities of recombinant PfRH5 proteins with basigin (BSG) were compared using in silico (CHARMM and AUTODOCK) and in vitro (Circular dichroism, fluorescence spectroscopy and isothermal titration calorimetry) methods. Results Pfrh1 (0.5), Pfrh2a/b (0.875), Pfrh4 (0.667) and Pfrh5 (0.778) sequence changes corresponded to low frequency (< 0.05) variants which resulted in an overall negative Tajima’s D. Since mismatch distribution of none of the Pfrh loci corroborated with the model of demographic expansion, a possible role of natural selection formulating Pfrh sequence diversity was investigated. Among the 5 members, Pfrh5 displayed very high dN/dS (5.7) ratio. Nevertheless, the model of selective sweep due to presence of any advantageous substitutions could not be invoked as polymorphic nonsynonymous sites (17/18) for Pfrh5 exceeded significantly over the divergent (62/86) ones (p = 0.0436). The majority of extant PfRH5 sequences (52/83) differed from the reference Pf3D7 allele by a single amino acid mismatch (C203Y). This non-conservative alteration was predicted to lower the total interaction energy of that PfRH5variant with BSG, compared to PfRH53D7. Biophysical evidences validated the proposition that PfRH5variant formed a more stable complex with BSG. Thermodynamic association constant for interaction of BSG with PfRH5variant was also found to be higher (Kavariant = 3.63E6 ± 2.02E6 M−1 and Ka3D7 = 1.31E6 ± 1.21E6 M−1). Conclusions Together, the study indicates that the genetic architecture of Pfrhs is principally shaped by purifying selection. The most abundant and ubiquitous PfRH5 variant harbouring 203Y, exhibits a greater affinity for BSG compared to PfRH53D7 possessing 203C allele. The study underscores the importance of selecting the functional allele that best represents circulating strains in natural parasite populations as vaccine targets.
Collapse
Affiliation(s)
- Sharmistha Ghoshal
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India
| | - Pramita Chowdhury
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India
| | - Sanhita Ray
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India
| | - Mitashree Mitra
- School of Studies in Anthropology. Pt, Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
| | - Sumana Datta Kanjilal
- Department of Pediatric Medicine, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Srikanta Sen
- Mitra Tower, Lake Town, Block-A, Kolkata, 700 089, India
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India.
| |
Collapse
|
6
|
Chowdhury P, Ray S, Chakraborty A, Sen S, Dasgupta AK, Sengupta S. Non-synonymous amino acid alterations in PfEBA-175 modulate the merozoite ligand's ability to interact with host's Glycophorin A receptor. INFECTION GENETICS AND EVOLUTION 2020; 85:104418. [PMID: 32561295 DOI: 10.1016/j.meegid.2020.104418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 11/24/2022]
Abstract
The pathological outcome of malaria due to Plasmodium falciparum infection depends largely on erythrocyte invasion by blood-stage merozoites which employ a cascade of interactions occurring between parasite ligands and RBC receptors. In a previous study exploring the genetic diversity of region-II of PfEBA-175, a ligand that plays a crucial part in parasite's RBC entry through Glycophorin A (GPA) receptor, we demonstrated that F2 domain of region-II underwent positive selection in Indian P. falciparum population through the accumulation of non-synonymous polymorphisms. Here, we examine the functional impact of two highly prevalent non-synonymous alterations in F2, namely Q584E & E592A, using a battery of molecular, biophysical and in-silico techniques. Application of circular dichroism, FTIR, fluorescence spectroscopy reveals that secondary and three-dimensional folding of recombinant-F2 protein carrying 584E and 592A residues (F2-Mut) differs significantly from that carrying 584Q and 592E (F2-3D7). A comparison of spectroscopic and thermodynamic parameters shows that F2-Mut is capable of forming a complex with GPA with higher efficiency compared to F2-3D7. In silico docking predicts both artemisinin and artesunate possess the capacity of slipping into the GPA binding crevices of PfEBA-175 and disrupt PfEBA-GPA association. However, the estimated affinity of artesunate towards PfEBA-175 with 584E and 592A residues is higher than that of artemisinin. Thermodynamic parameters computed using isotherms are concordant with this in-silico prediction. Together, our data suggest that the presence of amino acid alterations in F2 provide structural and functional stability favoring PfEBA-GPA interaction and artesunate can efficiently disrupt the interaction between GPA and PfEBA-175 even carrying altered amino acid residues. The present study alerts the malaria research community by presenting evidence that the parasite is gaining evolutionary fitness by cultivating genetic alterations in many of its proteins.
Collapse
Affiliation(s)
- Pramita Chowdhury
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Sanhita Ray
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Ayan Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Srikanta Sen
- Mitra Tower, Lake Town, Block-A, Kolkata 700 089, India
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| |
Collapse
|
7
|
Jaskiewicz E, Jodłowska M, Kaczmarek R, Zerka A. Erythrocyte glycophorins as receptors for Plasmodium merozoites. Parasit Vectors 2019; 12:317. [PMID: 31234897 PMCID: PMC6591965 DOI: 10.1186/s13071-019-3575-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/19/2019] [Indexed: 02/02/2023] Open
Abstract
Glycophorins are heavily glycosylated sialoglycoproteins of human and animal erythrocytes. In humans, there are four glycophorins: A, B, C and D. Glycophorins play an important role in the invasion of red blood cells (RBCs) by malaria parasites, which involves several ligands binding to RBC receptors. Four Plasmodium falciparum merozoite EBL ligands have been identified: erythrocyte-binding antigen-175 (EBA-175), erythrocyte-binding antigen-181 (EBA-181), erythrocyte-binding ligand-1 (EBL-1) and erythrocyte-binding antigen-140 (EBA-140). It is generally accepted that glycophorin A (GPA) is the receptor for P. falciparum EBA-175 ligand. It has been shown that α(2,3) sialic acid residues of GPA O-glycans form conformation-dependent clusters on GPA polypeptide chain which facilitate binding. P. falciparum can also invade erythrocytes using glycophorin B (GPB), which is structurally similar to GPA. It has been shown that P. falciparum EBL-1 ligand binds to GPB. Interestingly, a hybrid GPB-GPA molecule called Dantu is associated with a reduced risk of severe malaria and ameliorates malaria-related morbidity. Glycophorin C (GPC) is a receptor for P. falciparum EBA-140 ligand. Likewise, successful binding of EBA-140 depends on sialic acid residues of N- and O-linked oligosaccharides of GPC, which form a cluster or a conformational structure depending on the presence of peptide fragment encompassing amino acids (aa) 36–63. Evaluation of the homologous P. reichenowi EBA-140 unexpectedly revealed that the chimpanzee homolog of human glycophorin D (GPD) is probably the receptor for this ligand. In this review, we concentrate on the role of glycophorins as erythrocyte receptors for Plasmodium parasites. The presented data support the long-lasting idea of high evolutionary pressure exerted by Plasmodium on the human glycophorins, which emerge as important receptors for these parasites.
Collapse
Affiliation(s)
- Ewa Jaskiewicz
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland. .,Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516, Zielona Góra, Poland.
| | - Marlena Jodłowska
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Radosław Kaczmarek
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Agata Zerka
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|