1
|
Libra A, Bolehovska R, Kukla R, Musilova I, Menon R, Jacobsson B, Kacerovsky M. Characterization of Amniotic Fluid Ureaplasma Species from Pregnancies Complicated by Preterm Prelabor Rupture of Membranes. Reprod Sci 2024; 31:3440-3451. [PMID: 39317888 DOI: 10.1007/s43032-024-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The main aim of this study was to determine expanded sequence types (eSTs) of Ureaplasma species (U. spp.). DNA isolated from the amniotic fluid of pregnancies complicated by preterm prelabor rupture of membranes (PPROM) using an expanded multilocus sequence typing scheme. Additionally, the study sought to examine whether phylogenetic subgroups of U. spp. DNA differ with respect to maternal demographic and clinical parameters and selected aspects of short-term neonatal morbidity. This retrospective cohort study was focused on singleton pregnancies complicated by PPROM occurring between the gestational ages of 24+0 and 36+6 weeks, where amniocentesis was conducted to assess the intra-amniotic environment and the presence of U. spp. DNA in the amniotic fluid samples was confirmed. The stored aliquots of U. spp. DNA were used to assess differences in nucleotide sequences in six U. spp. genes (ftsH, rpL22, valS, thrS,ureG, and mba-np1) using the eMLST scheme. The expanded multilocus sequence typing scheme was performed in 73 samples of U. spp. DNA isolated from pregnancies complicated by PPROM. In total, 33 different U. spp. DNA eSTs were revealed, 21 (#20, 233-244, 248-251, 253, 255, 259, and 262) of which were novel. The most frequently identified eST was #41, identified in 18% (13/73) of the aliquots. Based on their genetic relationships, the U. spp. DNA was divided into two clusters and four subgroups [cluster I (U. parvum): A, 43% (n = 31); B, 15% (n = 11); and C, 26% (n = 19); cluster II (U. urealyticum): 1; 16% (n = 12)]. Cluster II had a higher rate of polymicrobial findings than cluster I (58% vs 16%; p = 0.005), while subgroup A had the highest rate of concomitant Mycoplasma hominis in the amniotic fluid samples (66%; p = 0.04). In conclusion, Ureaplasma spp. DNA obtained from PPROM consisted of 33 different eSTs of U. spp. DNA. No differences in maternal and neonatal characteristics were found among the phylogenetical subgroups of U. spp. DNA, except for a higher rate of polymicrobial amniotic fluid findings in those with U. urealyticumand the concomitant presence of M. hominis in the amniotic fluid in those with the presence of U. parvum.
Collapse
Affiliation(s)
- Antonin Libra
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 500 05, Czech Republic
- Generi Biotech, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Institute of Clinical Microbiology, University Hospital, Hradec Kralove, Czech Republic
- Institute of Clinical Microbiology, Charles University, Medical faculty in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rudolf Kukla
- Institute of Clinical Microbiology, University Hospital, Hradec Kralove, Czech Republic
- Institute of Clinical Microbiology, Charles University, Medical faculty in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivana Musilova
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 500 05, Czech Republic
- Institute of Clinical Microbiology, Charles University, Medical faculty in Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Obstetrics and Gynecology, Hospital Most, Krajska Zdravotni a.s, Most, Czech Republic
| | - Ramkumar Menon
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, Medical Branch, The University of Texas, Galveston, TX, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Marian Kacerovsky
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 500 05, Czech Republic.
- Institute of Clinical Microbiology, Charles University, Medical faculty in Hradec Kralove, Hradec Kralove, Czech Republic.
- Department of Obstetrics and Gynecology, Hospital Most, Krajska Zdravotni a.s, Most, Czech Republic.
| |
Collapse
|
2
|
Huang Y, Li D, Cai W, Zhu H, Shane MI, Liao C, Pan S. Distribution of Vaginal and Gut Microbiome in Advanced Maternal Age. Front Cell Infect Microbiol 2022; 12:819802. [PMID: 35694547 PMCID: PMC9186158 DOI: 10.3389/fcimb.2022.819802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The distribution of the microbiome in women with advanced maternal age (AMA) is poorly understood. To gain insight into this, the vaginal and gut microbiota of 62 women were sampled and sequenced using the 16S rRNA technique. These women were divided into three groups, namely, the AMA (age ≥ 35 years, n = 13) group, the non-advanced maternal age (NMA) (age < 35 years, n = 38) group, and the control group (non-pregnant healthy women, age >35 years, n = 11). We found that the alpha diversity of vaginal microbiota in the AMA group significantly increased. However, the beta diversity significantly decreased in the AMA group compared with the control group. There was no significant difference in the diversity of gut microbiota among the three groups. The distributions of microbiota were significantly different among AMA, NMA, and control groups. In vaginal microbiota, the abundance of Lactobacillus was higher in the pregnant groups. Bifidobacterium was significantly enriched in the AMA group. In gut microbiota, Prevotella bivia was significantly enriched in the AMA group. Vaginal and gut microbiota in women with AMA were noticeably different from the NMA and non-pregnant women, and this phenomenon is probably related to the increased risk of complications in women with AMA.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dianjie Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wei Cai
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Honglei Zhu
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mc Intyre Shane
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Can Liao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- *Correspondence: Can Liao, ; Shilei Pan,
| | - Shilei Pan
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Can Liao, ; Shilei Pan,
| |
Collapse
|
3
|
Harris SM, Boldenow E, Domino SE, Loch-Caruso R. Toxicant Disruption of Immune Defenses: Potential Implications for Fetal Membranes and Pregnancy. Front Physiol 2020; 11:565. [PMID: 32547423 PMCID: PMC7272693 DOI: 10.3389/fphys.2020.00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022] Open
Abstract
In addition to providing a physical compartment for gestation, the fetal membranes (FM) are an active immunological barrier that provides defense against pathogenic microorganisms that ascend the gravid reproductive tract. Pathogenic infection of the gestational tissues (FM and placenta) is a leading known cause of preterm birth (PTB). Some environmental toxicants decrease the capacity for organisms to mount an immune defense against pathogens. For example, the immunosuppressive effects of the widespread environmental contaminant trichloroethylene (TCE) are documented for lung infection with Streptococcus zooepidemicus. Group B Streptococcus (GBS; Streptococcus agalactiae) is a bacterial pathogen that is frequently found in the female reproductive tract and can colonize the FM in pregnant women. Work in our laboratory has demonstrated that a bioactive TCE metabolite, S-(1, 2-dichlorovinyl)-L-cysteine (DCVC), potently inhibits innate immune responses to GBS in human FM in culture. Despite these provocative findings, little is known about how DCVC and other toxicants modify the risk for pathogenic infection of FM. Infection of the gestational tissues (FM and placenta) is a leading known cause of PTB, therefore toxicant compromise of FM ability to fight off infectious microorganisms could significantly contribute to PTB risk. This Perspective provides the current status of understanding of toxicant-pathogen interactions in FM, highlighting knowledge gaps, challenges, and opportunities for research that can advance protections for maternal and fetal health.
Collapse
Affiliation(s)
- Sean M. Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Erica Boldenow
- Department of Biology, Calvin College, Grand Rapids, MI, United States
| | - Steven E. Domino
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|