1
|
Aktürk Dizman Y. Analysis of codon usage bias of exonuclease genes in invertebrate iridescent viruses. Virology 2024; 593:110030. [PMID: 38402641 DOI: 10.1016/j.virol.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Invertebrate iridescent viruses (IIVs) are double-stranded DNA viruses that belong to the Iridoviridae family. IIVs result diseases that vary in severity from subclinical to lethal in invertebrate hosts. Codon usage bias (CUB) analysis is a versatile method for comprehending the genetic and evolutionary aspects of species. In this study, we analyzed the CUB in 10 invertebrate iridescent viruses exonuclease genes by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results revealed that IIVs exonuclease genes are rich in A/T. The ENC analysis displayed a low codon usage bias in IIVs exonuclease genes. ENC-plot, neutrality plot, and parity rule 2 plot demonstrated that besides mutational pressure, other factors like natural selection, dinucleotide content, and aromaticity also contributed to CUB. The findings could enhance our understanding of the evolution of IIVs exonuclease genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye.
| |
Collapse
|
2
|
Lu M, Wan W, Li Y, Li H, Sun B, Yu K, Zhao J, Franzo G, Su S. Codon usage bias analysis of the spike protein of human coronavirus 229E and its host adaptability. Int J Biol Macromol 2023; 253:127319. [PMID: 37820917 DOI: 10.1016/j.ijbiomac.2023.127319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Human coronavirus 229E (HCoV-229E) represents one of the known coronaviruses capable of infecting humans and causes mild respiratory symptoms. It is also considered to have a zoonotic source, originating from animals and being transmitted the humans. In this study, a comprehensive phylogenetic and codon usage analysis of the spike (S) gene of HCoV-229E was conducted. Utilizing phylogenetic analysis and principal component analysis, HCoV-229E was categorized into four distinct clusters, each demonstrating unique host affiliations. Furthermore, it was observed that the codon usage bias within the S gene of HCoV-229E is relatively low, primarily influenced by natural selection patterns, with contributions from mutation pressure and dinucleotide abundance. Comparative analysis involving Codon Adaptation Index (CAI) and Relative Codon Deoptimization Index (RCDI) revealed that the codon usage pattern of HCoV-229E mirrors more closely that of camels, as opposed to alpacas and humans. The elucidation of the codon usage pattern within HCoV-229E, which we have meticulously examined, offers valuable insights for a more comprehensive comprehension of viral features, history, and evolutionary trajectory.
Collapse
Affiliation(s)
- Meng Lu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, 131 Dong'an Road, Shanghai 200032, People's Republic of China
| | - Wenbo Wan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, 131 Dong'an Road, Shanghai 200032, People's Republic of China
| | - Yuxing Li
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, 131 Dong'an Road, Shanghai 200032, People's Republic of China
| | - Haipeng Li
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, 131 Dong'an Road, Shanghai 200032, People's Republic of China
| | - Bowen Sun
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, 131 Dong'an Road, Shanghai 200032, People's Republic of China
| | - Kang Yu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, 131 Dong'an Road, Shanghai 200032, People's Republic of China
| | - Jin Zhao
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, 131 Dong'an Road, Shanghai 200032, People's Republic of China
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Shuo Su
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, 131 Dong'an Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
3
|
Lu Y, Wang W, Liu H, Li Y, Yan G, Franzo G, Dai J, He WT. Mutation and codon bias analysis of the spike protein of Omicron, the recent variant of SARS-CoV-2. Int J Biol Macromol 2023; 250:126080. [PMID: 37536405 DOI: 10.1016/j.ijbiomac.2023.126080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is a heavily mutated virus and designated as a variant of concern. To investigate the codon usage pattern of this new variant, we performed mutation and codon bias analysis for Omicron as well as for its sub-lineages BA.1 and BA.2 and compared them with the original SARS-CoV-2 and the Delta variant sequences obtained in this study. Our results indicate that the sub-lineage BA.1 and BA.2 have up to 23 sites of difference on the spike protein, which have minimal impact on function. The Omicron variant and its sub-lineages have similar codon usage patterns and A/U ending codons appear to be preferred over G/C ending codons. The Omicron has a lower degree of codon usage bias in spite of evidence that natural selection, mutation pressure and dinucleotide abundance shape the codon usage bias of Omicron, with natural selection being more significant on BA.2 than the other sub-lineages of Omicron. The codon usage pattern of Omicron variant that we explored provides valid information for a clearer understanding of Omicron and its sub-lineages, which could find application in vaccine development and optimization.
Collapse
Affiliation(s)
- Yunbiao Lu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Weixiu Wang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Hao Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Yue Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Ge Yan
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Jianjun Dai
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China.
| | - Wan-Ting He
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China.
| |
Collapse
|
4
|
Wu X, Shan K, Zan F, Tang X, Qian Z, Lu J. Optimization and Deoptimization of Codons in SARS-CoV-2 and Related Implications for Vaccine Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205445. [PMID: 37267926 PMCID: PMC10427376 DOI: 10.1002/advs.202205445] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/08/2023] [Indexed: 06/04/2023]
Abstract
The spread of coronavirus disease 2019 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), has progressed into a global pandemic. To date, thousands of genetic variants have been identified among SARS-CoV-2 isolates collected from patients. Sequence analysis reveals that the codon adaptation index (CAI) values of viral sequences have decreased over time but with occasional fluctuations. Through evolution modeling, it is found that this phenomenon may result from the virus's mutation preference during transmission. Using dual-luciferase assays, it is further discovered that the deoptimization of codons in the viral sequence may weaken protein expression during virus evolution, indicating that codon usage may play an important role in virus fitness. Finally, given the importance of codon usage in protein expression and particularly for mRNA vaccines, it is designed several codon-optimized Omicron BA.2.12.1, BA.4/5, and XBB.1.5 spike mRNA vaccine candidates and experimentally validated their high levels of expression. This study highlights the importance of codon usage in virus evolution and provides guidelines for codon optimization in mRNA and DNA vaccine development.
Collapse
Affiliation(s)
- Xinkai Wu
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Ke‐jia Shan
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Fuwen Zan
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100176China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100176China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| |
Collapse
|
5
|
Zhou H, Ren R, Yau SST. Utilizing the codon adaptation index to evaluate the susceptibility to HIV-1 and SARS-CoV-2 related coronaviruses in possible target cells in humans. Front Cell Infect Microbiol 2023; 12:1085397. [PMID: 36760235 PMCID: PMC9905242 DOI: 10.3389/fcimb.2022.1085397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023] Open
Abstract
Comprehensive identification of possible target cells for viruses is crucial for understanding the pathological mechanism of virosis. The susceptibility of cells to viruses depends on many factors. Besides the existence of receptors at the cell surface, effective expression of viral genes is also pivotal for viral infection. The regulation of viral gene expression is a multilevel process including transcription, translational initiation and translational elongation. At the translational elongation level, the translational efficiency of viral mRNAs mainly depends on the match between their codon composition and cellular translational machinery (usually referred to as codon adaptation). Thus, codon adaptation for viral ORFs in different cell types may be related to their susceptibility to viruses. In this study, we selected the codon adaptation index (CAI) which is a common codon adaptation-based indicator for assessing the translational efficiency at the translational elongation level to evaluate the susceptibility to two-pandemic viruses (HIV-1 and SARS-CoV-2) of different human cell types. Compared with previous studies that evaluated the infectivity of viruses based on codon adaptation, the main advantage of our study is that our analysis is refined to the cell-type level. At first, we verified the positive correlation between CAI and translational efficiency and strengthened the rationality of our research method. Then we calculated CAI for ORFs of two viruses in various human cell types. We found that compared to high-expression endogenous genes, the CAIs of viral ORFs are relatively low. This phenomenon implied that two kinds of viruses have not been well adapted to translational regulatory machinery in human cells. Also, we indicated that presumptive susceptibility to viruses according to CAI is usually consistent with the results of experimental research. However, there are still some exceptions. Finally, we found that two viruses have different effects on cellular translational mechanisms. HIV-1 decouples CAI and translational efficiency of endogenous genes in host cells and SARS-CoV-2 exhibits increased CAI for its ORFs in infected cells. Our results implied that at least in cases of HIV-1 and SARS-CoV-2, CAI can be regarded as an auxiliary index to assess cells' susceptibility to viruses but cannot be used as the only evidence to identify viral target cells.
Collapse
Affiliation(s)
- Haoyu Zhou
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,School of Life Sciences, Tsinghua University, Beijing, China
| | - Ruohan Ren
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,Zhili College, Tsinghua University, Beijing, China
| | - Stephen Shing-Toung Yau
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,Department of Mathematical Sciences, Tsinghua University, Beijing, China,*Correspondence: Stephen Shing-Toung Yau,
| |
Collapse
|
6
|
Mogro EG, Bottero D, Lozano MJ. Analysis of SARS-CoV-2 synonymous codon usage evolution throughout the COVID-19 pandemic. Virology 2022; 568:56-71. [PMID: 35134624 PMCID: PMC8808327 DOI: 10.1016/j.virol.2022.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including the general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evolution of SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our results show that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that of the human host. Further, a selection of deoptimized codons over time, which was accompanied by a decrease in both the codon adaptation index and the effective number of codons, was observed. All together, these findings suggest that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous codon usage, to become less pathogenic.
Collapse
Affiliation(s)
- Ezequiel G Mogro
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina
| | - Daniela Bottero
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina.
| |
Collapse
|
7
|
Panzera Y, Ramos N, Calleros L, Marandino A, Tomás G, Techera C, Grecco S, Frabasile S, Fuques E, Coppola L, Goñi N, Ramas V, Sorhouet C, Bormida V, Burgueño A, Brasesco M, Garland MR, Molinari S, Perez MT, Somma R, Somma S, Morel MN, Mogdasy C, Chiparelli H, Arbiza J, Delfraro A, Pérez R. Transmission cluster of COVID-19 cases from Uruguay: emergence and spreading of a novel SARS-CoV-2 ORF6 deletion. Mem Inst Oswaldo Cruz 2022; 116:e210275. [PMID: 35019072 PMCID: PMC8752050 DOI: 10.1590/0074-02760210275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Evolutionary changes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) include indels in non-structural, structural, and accessory open reading frames (ORFs) or genes. OBJECTIVES We track indels in accessory ORFs to infer evolutionary gene patterns and epidemiological links between outbreaks. METHODS Genomes from Coronavirus disease 2019 (COVID-19) case-patients were Illumina sequenced using ARTIC_V3. The assembled genomes were analysed to detect substitutions and indels. FINDINGS We reported the emergence and spread of a unique 4-nucleotide deletion in the accessory ORF6, an interesting gene with immune modulation activity. The deletion in ORF6 removes one repeat unit of a two 4-nucleotide repeat, which shows that directly repeated sequences in the SARS-CoV-2 genome are associated with indels, even outside the context of extended repeat regions. The 4-nucleotide deletion produces a frameshifting change that results in a protein with two inserted amino acids, increasing the coding information of this accessory ORF. Epidemiological and genomic data indicate that the deletion variant has a single common ancestor and was initially detected in a health care outbreak and later in other COVID-19 cases, establishing a transmission cluster in the Uruguayan population. MAIN CONCLUSIONS Our findings provide evidence for the origin and spread of deletion variants and emphasise indels’ importance in epidemiological studies, including differentiating consecutive outbreaks occurring in the same health facility.
Collapse
Affiliation(s)
- Yanina Panzera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Natalia Ramos
- Universidad de la República, Facultad de Ciencias, Instituto de Biología e Instituto de Química Biológica, Sección Virología, Montevideo, Uruguay
| | - Lucía Calleros
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Ana Marandino
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Gonzalo Tomás
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Claudia Techera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Sofía Grecco
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Sandra Frabasile
- Universidad de la República, Facultad de Ciencias, Instituto de Biología e Instituto de Química Biológica, Sección Virología, Montevideo, Uruguay
| | - Eddie Fuques
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Leticia Coppola
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Natalia Goñi
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Viviana Ramas
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Cecilia Sorhouet
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Victoria Bormida
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Analía Burgueño
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - María Brasesco
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Maria Rosa Garland
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Sylvia Molinari
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Maria Teresa Perez
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Rosina Somma
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Silvana Somma
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Maria Noelia Morel
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Cristina Mogdasy
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Héctor Chiparelli
- Ministerio de Salud Pública, Centro Nacional de Referencia de Influenza y Otros Virus Respiratorios, Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Juan Arbiza
- Universidad de la República, Facultad de Ciencias, Instituto de Biología e Instituto de Química Biológica, Sección Virología, Montevideo, Uruguay
| | - Adriana Delfraro
- Universidad de la República, Facultad de Ciencias, Instituto de Biología e Instituto de Química Biológica, Sección Virología, Montevideo, Uruguay
| | - Ruben Pérez
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| |
Collapse
|
8
|
Calcagnile M, Verri T, Tredici MS, Forgez P, Alifano M, Alifano P. Codon usage, phylogeny and binding energy estimation predict the evolution of SARS-CoV-2. One Health 2021; 13:100352. [PMID: 34841034 PMCID: PMC8610831 DOI: 10.1016/j.onehlt.2021.100352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
In the frames of a One Health strategy, i.e. a strategy should be able to predict susceptibility to infection in both humans and animals, developing a SARS-CoV-2 mutation tracking system is a goal. We observed that the phylogenetic proximity of vertebrate ACE2 receptors does not affect the binding energy for the viral spike protein. However, all viral variants seem to bind ACE2 better in many animals than in humans. Moreover, two observations highlight that the evolution of the virus started at the beginning of 2020 and culminated with the appearance of the variants. First, codon usage analysis shows that the B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants, similar in the use of codons, are also similar to a virus sampled in January 2020. Second, the host-specific D614G mutation becomes prevalent starting from March 2020. Overall, we show that SARS-CoV-2 undergoes a process of molecular evolution that begins with the optimization of codons followed by the functional optimization of the spike protein.
Collapse
Affiliation(s)
- Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Maurizio Salvatore Tredici
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Patricia Forgez
- INSERM UMR-S 1124 T3S, Eq 5 Cellular Homeostasis, Cancer and Therapy, University of Paris, Campus Saint Germain, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, France
- INSERM U1138 Team «Cancer, Immune Control, and Escape», Cordeliers Research Center, University of Paris, France
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
9
|
Si F, Jiang L, Yu R, Wei W, Li Z. Study on the Characteristic Codon Usage Pattern in Porcine Epidemic Diarrhea Virus Genomes and Its Host Adaptation Phenotype. Front Microbiol 2021; 12:738082. [PMID: 34733253 PMCID: PMC8558211 DOI: 10.3389/fmicb.2021.738082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), which classified in the genus Alphacoronavirus, family Coronaviridae, is one of the most important pathogens that cause heavy economic losses in pig industry. Although intensive mutation and recombination analysis of PEDV strains were provided, systematic genome analysis were needed to elucidate the evolution mechanism and codon usage adaptation profiles of the pathogen. Here, a comprehensive investigation was carried out to reveal the systematic evolutionary processes of synonymous codon usage and host-adapted evolution phenotype of PEDV genome. We found a low codon usage bias (CUB) in PEDV genome and that nucleotide compositions, natural selection, mutation pressure and geographical diversity shapes the codon usage patterns of PEDV, with natural selection dominated the overall codon usage bias in PEDV than the others. By using the relative codon deoptimization index (RCDI) and similarity index (SiD) analysis, we observed that genotype II PEDV strains showed the highest level of adaptation phenotype to Sus scrofa than another divergent clade. To the best of our knowledge, this is the first comprehensive report elaborating the codon usage and host adaptation of PEDV. The findings offer an insight into our understanding of factors involved in PEDV evolution, adaptation and fitness toward their hosts.
Collapse
Affiliation(s)
- Fusheng Si
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ruisong Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhen Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|