1
|
Adeleke MA. Computational Development of Transmission-Blocking Vaccine Candidates Based on Fused Antigens of Pre- and Post-fertilization Gametocytes Against Plasmodium falciparum. Bioinform Biol Insights 2025; 19:11779322241306215. [PMID: 40034580 PMCID: PMC11873872 DOI: 10.1177/11779322241306215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/21/2024] [Indexed: 03/05/2025] Open
Abstract
Plasmodium falciparum is the most fatal species of malaria parasites in humans. Attempts at developing vaccines against the malaria parasites have not been very successful even after the approval of the RTS, S/AS01 vaccine. There is a continuous need for more effective vaccines including sexual-stage antigens that could block the transmission of malaria parasites between mosquitoes and humans. Low immunogenicity, expression, and stability are some of the challenges of transmission-blocking vaccine (TBV). This study was designed to computationally identify TBV candidates based on fused antigens by combining highly antigenic peptides from prefertilization (Pfs230, Pfs48/45) and postfertilization (Pfs25, Pfs28) gametocytes. The peptides were selected based on their antigenicity, nonallergenicity, and lack of similarity with the human proteome. Two fused antigens vaccine candidates (FAVCs) were constructed using Flagellin Salmonella enterica (FAVC-FSE) and Cholera toxin B (FAVC-CTB) as adjuvants. The constructs were evaluated for their physicochemical properties, structural stability, immunogenicity, and potential to elicit cross-protection across multiple Plasmodium species. The results yielded antigenic peptides, with antigenicity scores between 0.7589 and 1.1821. The structural analysis of FAVC-FSE and FAVC-CTB showed a Z-score of -6.70 and -4.79, a Ramachandran plot of 96.94% and 94.86% with overall quality of 94.20% and 89.85%, respectively. The FAVCs contained CD8+, CD4+, and linear B-cell epitopes with antigenicity scores between 1.2089 and 2.8623, 0.5663 and 2.4132, and 1.5196 and 2.2212, respectively. Each FAVC generated 6 conformational B-cells. High population coverage values were recorded for the FAVCs. The ability of the FAVCs to trigger immune response was evaluated through an in silico immune stimulation. The low-binding interaction energy that resulted from molecular docking and dynamics simulations showed a strong affinity of FAVCs to Toll-like receptor 5 (TLR5). The results indicate that the FAVC-FSE vaccine candidate is more promising to interrupt P falciparum transmission and provides a baseline for experimental validation.
Collapse
Affiliation(s)
- Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Banerjee S, Halder P, Das S, Maiti S, Bhaumik U, Dutta M, Chowdhury G, Kitahara K, Miyoshi SI, Mukhopadhyay AK, Dutta S, Koley H. Pentavalent outer membrane vesicles immunized mice sera confers passive protection against five prevalent pathotypes of diarrhoeagenic Escherichia coli in neonatal mice. Immunol Lett 2023; 263:33-45. [PMID: 37734682 DOI: 10.1016/j.imlet.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Diarrhoeagenic Escherichia coli (DEC) pathotypes are one of the major causative agents of diarrhoea induced childhood morbidity and mortality in developing countries. Licensed vaccines providing broad spectrum protection against DEC mediated infections are not available. Outer membrane vesicles (OMVs) are microvesicles released by gram-negative bacteria during the growth phase and contain multiple immunogenic proteins. Based on prevalence of infections, we have formulated a pentavalent outer-membrane vesicles (POMVs) based immunogen targeting five main pathotypes of DEC responsible for diarrhoeal diseases. Following isolation, OMVs from five DEC pathotypes were mixed in equal proportions to formulate POMVs and 10 µg of the immunogen was intraperitoneally administered to adult BALB/c mice. Three doses of POMVs induced significant humoral immune response against whole cell lysates (WCLs), outer membrane proteins (OMPs) and lipopolysaccharides (LPS) isolated from DEC pathotypes along with significant induction of cellular immune response in adult mice. Passive transfer of POMVs immunized adult mice sera protected neonatal mice significantly against DEC infections. Overall, this study finds POMVs to be immunogenic in conferring broad-spectrum passive protection to neonatal mice against five main DEC pathotypes. Altogether, these findings suggest that POMVs can be used as a potent vaccine candidate to ameliorate the DEC-mediated health burden.
Collapse
Affiliation(s)
- Soumalya Banerjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Sanjib Das
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Ushasi Bhaumik
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India.
| |
Collapse
|
3
|
Madlala T, Adeleke VT, Okpeku M, Tshilwane SI, Adeniyi AA, Adeleke MA. Screening of apical membrane antigen-1 (AMA1), dense granule protein-7 (GRA7) and rhoptry protein-16 (ROP16) antigens for a potential vaccine candidate against Toxoplasma gondii for chickens. Vaccine X 2023; 14:100347. [PMID: 37519774 PMCID: PMC10384181 DOI: 10.1016/j.jvacx.2023.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by the protozoan parasite, Toxoplasma gondii known to infect almost all animals, including birds and humans globally. This disease has impacted the livestock industry and public health, where infection of domestic animals increases the zoonotic risk of transmission of infection to humans, threatening public health. Hence the need to discover novel and safe vaccines to fight against toxoplasmosis. In the current study, a novel multiepitope vaccine was designed using immunoinformatics techniques targeting T. gondii AMA1, GRA7 and ROP16 antigens, consisting of antigenic, immunogenic, non-allergenic and cytokine inducing T-cell (9 CD8+ and 15 CD4+) epitopes and four (4) B-cell epitopes fused together using AAY, KK and GPGPG linkers. The tertiary model of the proposed vaccine was predicted and validated to confirm the structural quality of the vaccine. The designed vaccine was highly antigenic (antigenicity = 0.6645), immunogenic (score = 2.89998), with molecular weight of 73.35 kDa, instability and aliphatic index of 28.70 and 64.10, respectively; and GRAVY of -0.363. The binding interaction, stability and flexibility were assessed with molecular docking and dynamics simulation, which revealed the proposed vaccine to have good structural interaction (binding affinity = -106.882 kcal/mol) and stability when docked with Toll like receptor-4 (TLR4). The results revealed that the Profilin-adjuvanted vaccine is promising, as it predicted induction of enhanced immune responses through the production of cytokines and antibodies critical in blocking host invasion.
Collapse
Affiliation(s)
- Thabile Madlala
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Durban 4031, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Selaelo I. Tshilwane
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Adebayo A. Adeniyi
- Department of Industrial Chemistry, Federal University, Oye-Ekiti, P.O Box 370111, Nigeria
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
4
|
Khalid K, Hussain T, Jamil Z, Alrokayan KS, Ahmad B, Waheed Y. Vaccinomics-Aided Development of a Next-Generation Chimeric Vaccine against an Emerging Threat: Mycoplasma genitalium. Vaccines (Basel) 2022; 10:1720. [PMID: 36298585 PMCID: PMC9608589 DOI: 10.3390/vaccines10101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma genitalium, besides urethritis, causes a number of other sexually transmitted diseases, posing a significant health threat to both men and women, particularly in developing countries. In light of the rapid appearance of multidrug-resistant strains, M. genitalium is regarded as an emerging threat and has been placed on the CDC's "watch list". Hence, a protective vaccine is essential for combating this pathogen. In this study, we utilized reverse vaccinology to develop a chimeric vaccine against M. genitalium by identifying vaccine targets from the reference proteome (Strain G-37) of this pathogen. A multiepitope vaccine was developed using proteins that are non-toxic, non-allergic, and non-homologous to human proteins. Several bioinformatic tools identified linear and non-linear B-cell epitopes, as well as MHC epitopes belonging to classes I and II, from the putative vaccine target proteins. The epitopes that showed promiscuity among the various servers were shortlisted and subsequently selected for further investigation based on an immunoinformatic analysis. Using GPGPG, AAY, and KK linkers, the shortlisted epitope sequences were assembled to create a chimeric construct. A GPI anchor protein immunomodulating adjuvant was adjoined to the vaccine construct's N-terminus through the EAAK linker so as to improve the overall immunogenicity. For further investigations of the designed construct, various bioinformatic tools were employed to study the physicochemical properties, immune profile, solubility, and allergenicity profile. A tertiary chimeric design was computationally modeled using I-TASSER and Robetta and was subsequently refined through GalaxyRefine. ProSA-Web was exploited to corroborate the quality of the construct by detecting errors and the Ramachandran plot was used to identify possible quality issues. Simulation studies of the molecular dynamics demonstrated the robustness and flexibility of the designed construct. Following the successful docking of the designed model to the immune receptors, the construct was computationally cloned into Escherichia coli plasmids to affirm the efficient expression of the designed construct in a biological system.
Collapse
Affiliation(s)
- Kashaf Khalid
- Clinical and Biomedical Research Center, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan
| | - Tajamul Hussain
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zubia Jamil
- Department of Medicine, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan
| | | | - Bashir Ahmad
- Department of Biotechnology, International Islamic University, Islamabad 44000, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|