1
|
Rad MJ, Navi Z, Heidari AR, Arab FL, Tabasi N, Rastin M, Khadem Rezaiyan M, Moghaddas E, Mahmoudi M. Evaluation of the immunoregulatory effect of
Dicrocoelium dendriticum
eggs on inflammatory and anti‐inflammatory cytokines in
EAE
model. Parasite Immunol 2022; 44:e12942. [DOI: 10.1111/pim.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Mozhdeh Jafari Rad
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Zahra Navi
- Department of Parasitology and Mycology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Reza Heidari
- Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Nafiseh Tabasi
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Rastin
- Immunology Research Center, Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Khadem Rezaiyan
- Clinical Research Development Unit Mashhad University of Medical Sciences Mashhad Iran
| | - Elham Moghaddas
- Department of Parasitology and Mycology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mahmoud Mahmoudi
- Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Immunology Research Center, Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
2
|
Alessio N, Brigida AL, Peluso G, Antonucci N, Galderisi U, Siniscalco D. Stem Cell-Derived Exosomes in Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:944. [PMID: 32033002 PMCID: PMC7037429 DOI: 10.3390/ijerph17030944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023]
Abstract
Neurodevelopmental lifelong pathologies defined by problems with social interaction, communication capacity and presence of repetitive/stereotyped clusters of behavior and interests are grouped under the definition of autism spectrum disorder (ASD). ASD prevalence is still increasing, indicating the need to identify specific biomarkers and novel pharmacotherapies. Neuroinflammation and neuro-immune cross-talk dysregulation are specific hallmarks of ASD, offering the possibility of treating these disorders by stem cell therapy. Indeed, cellular strategies have been postulated, proposed and applied to ASD. However, less is known about the molecular action mechanisms of stem cells. As a possibility, the positive and restorative effects mediated by stem cells could be due to their paracrine activity, by which stem cells produce and release several ameliorative and anti-inflammatory molecules. Among the secreted complex tools, exosomes are sub-organelles, enriched by RNA and proteins, that provide cell-to-cell communication. Exosomes could be the mediators of many stem cell-associated therapeutic activities. This review article describes the potential role of exosomes in alleviating ASD symptoms.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
| | | | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), via P. Castellino 111, 80131 Naples, Italy;
| | - Nicola Antonucci
- Biomedical Centre for Autism Research and Therapy, 70126 Bari, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
| | - Dario Siniscalco
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
- Centre for Autism—La Forza del Silenzio, 81036 Caserta, Italy
| |
Collapse
|
3
|
Abdoli A, Mirzaian Ardakani H. Potential application of helminth therapy for resolution of neuroinflammation in neuropsychiatric disorders. Metab Brain Dis 2020; 35:95-110. [PMID: 31352539 DOI: 10.1007/s11011-019-00466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022]
Abstract
Neuropsychiatric disorders (NPDs) are among the major debilitating disorders worldwide with multiple etiological factors. However, in recent years, psychoneuroimmunology uncovered the role of inflammatory condition and autoimmune disorders in the etiopathogenesis of different NPDs. Hence, resolution of inflammation is a new therapeutic target of NPDs. On the other hand, Helminth infections are among the most prevalent infectious diseases in underdeveloped countries, which usually caused chronic infections with minor clinical symptoms. Remarkably, helminths are among the master regulator of inflammatory reactions and epidemiological studies have shown an inverse association between prevalence of autoimmune disorders with these infections. As such, changes of intestinal microbiota are known to be associated with inflammatory conditions in various NPDs. Conversely, helminth colonization alters the intestinal microbiota composition that leads to suppression of intestinal inflammation. In animal models and human studies, helminths or their antigens have shown to be protected against severe autoimmune and allergic disorders, decline the intensity of inflammatory reactions and improved clinical symptoms of the patients. Therefore, "helminthic therapy" have been used for modulation of immune disturbances in different autoimmunity illnesses, such as Multiple Sclerosis (MS) and Inflammatory Bowel Disease (IBD). Here, it is proposed that "helminthic therapy" is able to ameliorate neuroinflammation of NPDs through immunomodulation of inflammatory reactions and alteration of microbiota composition. This review discusses the potential application of "helminthic therapy" for resolution of neuroinflammation in NPDs.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, POBox 74148-46199, Ostad Motahari Ave, Jahrom, Iran.
- Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hoda Mirzaian Ardakani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Arroyo-López C. Helminth therapy for autism under gut-brain axis- hypothesis. Med Hypotheses 2019; 125:110-118. [PMID: 30902137 DOI: 10.1016/j.mehy.2019.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Autism is a neurodevelopmental disease included within Autism Syndrome Disorder (ASD) spectrum. ASD has been linked to a series of genes that play a role in immune response function and patients with autism, commonly suffer from immune-related comorbidities. Despite the complex pathophysiology of autism, Gut-brain axis is gaining strength in the understanding of several neurological disorders. In addition, recent publications have shown the correlation between immune dysfunctions, gut microbiota and brain with the behavioral alterations and comorbid symptoms found in autism. Gut-brain axis acts as the "second brain", in a communication network established between neural, endocrine and the immunological systems. On the other hand, Hygiene Hypothesis suggests that the increase in the incidence of autoimmune diseases in the modern world can be attributed to the decrease of exposure to infectious agents, as parasitic nematodes. Helminths induce modulatory and protective effects against several inflammatory disorders, maintaining gastrointestinal homeostasis and modulating brain functions. Helminthic therapy has been previously performed in diseases such as ulcerative colitis, Crohn's disease, diabetes, multiple sclerosis, asthma, rheumatoid arthritis, and food allergies. Considering gut-brain axis, Hygiene Hypothesis, and the modulatory effects of helminths I hypothesized that a treatment with Trichuris suis soluble products represents a feasible holistic treatment for autism, and the key for the development of novel treatments. Preclinical studies are required to test this hypothesis.
Collapse
Affiliation(s)
- Celia Arroyo-López
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, United States.
| |
Collapse
|
5
|
Siniscalco D, Lisa Brigida A, Antonucci N. Autism and neuro-immune-gut link. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.2.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
6
|
Elliott DE, Weinstock JV. Nematodes and human therapeutic trials for inflammatory disease. Parasite Immunol 2017; 39. [PMID: 27977856 DOI: 10.1111/pim.12407] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
Abstract
Helminth infections likely provide a protective influence against some immune-mediated and metabolic diseases because helminth infection dramatically decreased in developed countries shortly before the explosive rise in the prevalence of these diseases. The capacity of helminths to activate immune-regulatory circuits in their hosts and to modulate the composition of intestinal flora appears to be the mechanisms of protective action. Animal models of disease show that various helminth species prevent and/or block inflammation in various organs in a diverse range of diseases. Clinical trials have demonstrated that medicinal exposure to Trichuris suis or small numbers of Necator americanus is safe with minor, if any, reported adverse effects. This includes exposure of inflamed intestine to T. suis, asthmathic lung to N. americanus and in patients with atopy. Efficacy has been suggested in some small studies, but is absent in others. Factors that may have led to inconclusive results in some trials are discussed. To date, there have been no registered clinical trials using helminths to treat metabolic syndrome or its component conditions. However, the excellent safety profile of T. suis or N. americanus suggests that such studies should be possible.
Collapse
Affiliation(s)
- D E Elliott
- Division of Gastroenterology, University of Iowa, Iowa City, IA, USA
| | - J V Weinstock
- Division of Gastroenterology, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
7
|
Practices and outcomes of self-treatment with helminths based on physicians' observations. J Helminthol 2016; 91:267-277. [DOI: 10.1017/s0022149x16000316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThe successful use of helminths as therapeutic agents to resolve inflammatory disease was first recorded 40 years ago. Subsequent work in animal models and in humans has demonstrated that the organisms might effectively treat a wide range of inflammatory diseases, including allergies, autoimmune disorders and inflammation-associated neuropsychiatric disorders. However, available information regarding the therapeutic uses and effects of helminths in humans is limited. This study probes the practices and experiences of individuals ‘self-treating’ with helminths through the eyes of their physicians. Five physicians monitoring more than 700 self-treating patients were interviewed. The results strongly support previous indications that helminth therapy can effectively treat a wide range of allergies, autoimmune conditions and neuropsychiatric disorders, such as major depression and anxiety disorders. Approximately 57% of the self-treating patients observed by physicians in the study had autism. Physicians reported that the majority of patients with autism and inflammation-associated co-morbidities responded favourably to therapy with either of the two most popular organisms currently used by self-treaters, Hymenolepis diminuta and Trichuris suis. However, approximately 1% of paediatric patients experienced severe gastrointestinal pains with the use of H. diminuta, although the symptoms were resolved with an anti-helminthic drug. Further, exposure to helminths apparently did not affect the impaired comprehension of social situations that is the hallmark of autism. These observations point toward potential starting points for clinical trials, and provide further support for the importance of such trials and for concerted efforts aimed at probing the potential of helminths, and perhaps other biologicals, for therapeutic use.
Collapse
|
8
|
Li Q, Zhou JM. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 2016; 324:131-9. [PMID: 26964681 DOI: 10.1016/j.neuroscience.2016.03.013] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/04/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a series of neurodevelopmental disorders that are characterized by deficits in both social and cognitive functions. Although the exact etiology and pathology of ASD remain unclear, a disorder of the microbiota-gut-brain axis is emerging as a prominent factor in the generation of autistic behaviors. Clinical studies have shown that gastrointestinal symptoms and compositional changes in the gut microbiota frequently accompany cerebral disorders in patients with ASD. A disturbance in the gut microbiota, which is usually induced by a bacterial infection or chronic antibiotic exposure, has been implicated as a potential contributor to ASD. The bidirectional microbiota-gut-brain axis acts mainly through neuroendocrine, neuroimmune, and autonomic nervous mechanisms. Application of modulators of the microbiota-gut-brain axis, such as probiotics, helminthes and certain special diets, may be a promising strategy for the treatment of ASD. This review mainly discusses the salient observations of the disruptions of the microbiota-gut-brain axis in the pathogenesis of ASD and reveals its potential therapeutic role in autistic deficits.
Collapse
Affiliation(s)
- Q Li
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - J-M Zhou
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
9
|
Frye RE, Slattery J, MacFabe DF, Allen-Vercoe E, Parker W, Rodakis J, Adams JB, Krajmalnik-Brown R, Bolte E, Kahler S, Jennings J, James J, Cerniglia CE, Midtvedt T. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:26878. [PMID: 25956237 PMCID: PMC4425814 DOI: 10.3402/mehd.v26.26878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/05/2015] [Accepted: 04/06/2015] [Indexed: 02/07/2023]
Abstract
There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing number of research studies have provided evidence that the composition of the gut (enteric) microbiome (GM) in at least a subset of individuals with autism spectrum disorder (ASD) deviates from what is usually observed in typically developing individuals. There are several lines of research that suggest that specific changes in the GM could be causative or highly associated with driving core and associated ASD symptoms, pathology, and comorbidities which include gastrointestinal symptoms, although it is also a possibility that these changes, in whole or in part, could be a consequence of underlying pathophysiological features associated with ASD. However, if the GM truly plays a causative role in ASD, then the manipulation of the GM could potentially be leveraged as a therapeutic approach to improve ASD symptoms and/or comorbidities, including gastrointestinal symptoms. One approach to investigating this possibility in greater detail includes a highly controlled clinical trial in which the GM is systematically manipulated to determine its significance in individuals with ASD. To outline the important issues that would be required to design such a study, a group of clinicians, research scientists, and parents of children with ASD participated in an interdisciplinary daylong workshop as an extension of the 1st International Symposium on the Microbiome in Health and Disease with a Special Focus on Autism (www.microbiome-autism.com). The group considered several aspects of designing clinical studies, including clinical trial design, treatments that could potentially be used in a clinical trial, appropriate ASD participants for the clinical trial, behavioral and cognitive assessments, important biomarkers, safety concerns, and ethical considerations. Overall, the group not only felt that this was a promising area of research for the ASD population and a promising avenue for potential treatment but also felt that further basic and translational research was needed to clarify the clinical utility of such treatments and to elucidate possible mechanisms responsible for a clinical response, so that new treatments and approaches may be discovered and/or fostered in the future.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA;
| | - John Slattery
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Derrick F MacFabe
- Department of Psychology and Psychiatry, Western University, London, ON, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - John Rodakis
- N of One: Autism Research Foundation, Dallas, TX, USA
| | - James B Adams
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ellen Bolte
- N of One: Autism Research Foundation, Dallas, TX, USA
| | - Stephen Kahler
- Division of Neurology, Arkansas Children's Hospital Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Jill James
- Department of Developmental Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | |
Collapse
|
10
|
Afifi MA, Jiman-Fatani AA, El Saadany S, Fouad MA. Parasites-allergy paradox: Disease mediators or therapeutic modulators. J Microsc Ultrastruct 2015; 3:53-61. [PMID: 30023182 PMCID: PMC6014186 DOI: 10.1016/j.jmau.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 02/07/2023] Open
Abstract
The noticeable phenomenon of an increased frequency of immune-inflammatory disorders, in the industrialized world, has led to the implication of parasitic infections in the pathophysiology of these diseases. Most of the studies investigated the infection connection to allergy have centered on helminthes. Parasitic helminthes are a group of metazoans that are evolutionary diverse, yet converge to evolve common modes of immunomodulation. Helminth immunoregulation is mainly mediated by a regulatory response including Treg and Breg cells with alternatively-activated macrophages. There is increasing evidence for a causal relationship between helminth infection and allergic hyporesponsiveness, however, conflicting data are still generating. The helminth immunoregulation seems to be species-specific and phase-specific. It depends on the stage of the clinical disease which correlates with a corresponding parasitic stage (egg, larva or mature adult). Here, we review the cellular and molecular mechanisms utilized by helminthes to manipulate the immune system and the consequent bystander immunomodulatory responses toward environmental allergens. We especially focus on parasitic species and molecules involved in the modulation of allergic disorders and summarize the experimental and clinical trials using them as therapeutic agents. We also discuss the potentials and obstacles, for helminthes and/or their derived molecules, to emerge as novel therapeutic modalities.
Collapse
Affiliation(s)
- Mohammed A. Afifi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Corresponding author at: Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, P.O. Box 80205, Jeddah 21589, Saudi Arabia. Tel.: +966 569722590. E-mail address: (M.A. Afifi)
| | - Asif A. Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif El Saadany
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Fouad
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Beales DL. Biome depletion in conjunction with evolutionary mismatches could play a role in the etiology of neurofibromatosis 1. Med Hypotheses 2015; 84:305-14. [PMID: 25665856 DOI: 10.1016/j.mehy.2015.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/31/2014] [Accepted: 01/12/2015] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis 1 (NF1) arises de novo in a striking 30-50% of cases, pointing toward an environmental etiology, though none has been clearly identified. The Biome Depletion Theory posits that the absence of mutualistic and commensal organisms within the human body coupled with modern lifestyle alterations may have profoundly deleterious effects, inclusive of immunologic derangement that is thought to result in allergy, atopy, and numerous autoimmune diseases. Biome depletion has been implicated as a factor in the etiology of both multiple sclerosis and autism spectrum disorders; biome reconstitution, i.e. replenishment of the biome with certain keynote species, is being used in the treatment of these and other autoimmune states. Neurofibromatosis 1 has been associated with allergy, various autoimmune states, multiple sclerosis, and autism. Recent research has posited that NF1, multiple sclerosis and autism may all arise from disturbances in the neural crest during gestation. This paper hypothesizes that there is indirect evidence that a highly inflammatory uterine state may precipitate epigenetic changes in vulnerable NF-related genes in the course of fetal development. The etiology of NF1 may lie in the absence of immunomodulation by commensal and mutualistic species once ubiquitously present in the environment, as well as through adoption of a modern lifestyle that contributes to chronic inflammation. Replenishment of helminths and other missing organisms to the human biome prior to conception as well as addressing nutritional status, psychological stress, and environmental exposures may prevent the development of NF1.
Collapse
Affiliation(s)
- Donna L Beales
- Lowell General Hospital, Medical Library, 295 Varnum Avenue, Lowell, MA 01854, United States.
| |
Collapse
|
12
|
Lukeš J, Kuchta R, Scholz T, Pomajbíková K. (Self-) infections with parasites: re-interpretations for the present. Trends Parasitol 2014; 30:377-85. [DOI: 10.1016/j.pt.2014.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 12/26/2022]
|
13
|
Siniscalco D, Bradstreet JJ, Sych N, Antonucci N. Mesenchymal stem cells in treating autism: Novel insights. World J Stem Cells 2014; 6:173-178. [PMID: 24772244 PMCID: PMC3999775 DOI: 10.4252/wjsc.v6.i2.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/19/2013] [Accepted: 03/18/2014] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, abnormal to absent verbal communication, restricted interests, and repetitive stereotypic verbal and non-verbal behaviors, influencing the ability to relate to and communicate. The core symptoms of ASDs concern the cognitive, emotional, and neurobehavioural domains. The prevalence of autism appears to be increasing at an alarming rate, yet there is a lack of effective and definitive pharmacological options. This has created an increased sense of urgency, and the need to identify novel therapies. Given the growing awareness of immune dysregulation in a significant portion of the autistic population, cell therapies have been proposed and applied to ASDs. In particular, mesenchymal stem cells (MSCs) possess the immunological properties which make them promising candidates in regenerative medicine. MSC therapy may be applicable to several diseases associated with inflammation and tissue damage, where subsequent regeneration and repair is necessary. MSCs could exert a positive effect in ASDs through the following mechanisms: stimulation of repair in the damaged tissue, e.g., inflammatory bowel disease; synthesizing and releasing anti-inflammatory cytokines and survival-promoting growth factors; integrating into existing neural and synaptic network, and restoring plasticity. The paracrine mechanisms of MSCs show interesting potential in ASD treatment. Promising and impressive results have been reported from the few clinical studies published to date, although the exact mechanisms of action of MSCs in ASDs to restore functions are still largely unknown. The potential role of MSCs in mediating ASD recovery is discussed in light of the newest findings from recent clinical studies.
Collapse
|
14
|
Siniscalco D, Bradstreet JJ, Cirillo A, Antonucci N. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages. J Neuroinflammation 2014; 11:78. [PMID: 24739187 PMCID: PMC3996516 DOI: 10.1186/1742-2094-11-78] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/02/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. METHODS To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. RESULTS GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. CONCLUSIONS This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Second University of Naples, via S, Maria di Costantinopoli, 16 - 80138 Naples, Italy.
| | | | | | | |
Collapse
|
15
|
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.
Collapse
|
16
|
Perspectives on the use of stem cells for autism treatment. Stem Cells Int 2013; 2013:262438. [PMID: 24222772 PMCID: PMC3810518 DOI: 10.1155/2013/262438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/22/2013] [Accepted: 09/06/2013] [Indexed: 12/13/2022] Open
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.
Collapse
|
17
|
Siniscalco D, Cirillo A, Bradstreet JJ, Antonucci N. Epigenetic findings in autism: new perspectives for therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4261-73. [PMID: 24030655 PMCID: PMC3799534 DOI: 10.3390/ijerph10094261] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, communications, restricted interests, and repetitive stereotypic behaviors. Despite extensive genetic and biological research, significant controversy surrounds our understanding of the specific mechanisms of their pathogenesis. However, accumulating evidence points to the involvement of epigenetic modifications as foundational in creating ASD pathophysiology. Epigenetic modifications or the alteration of DNA transcription via variations in DNA methylation and histone modifications but without alterations in the DNA sequence, affect gene regulation. These alterations in gene expression, obtained through DNA methylation and/or histone modifications, result from transcriptional regulatory influences of environmental factors, such as nutritional deficiencies, various toxicants, immunological effects, and pharmaceuticals. As such these effects are epigenetic regulators which determine the final biochemistry and physiology of the individual. In contrast to psychopharmacological interventions, bettering our understanding of how these gene-environmental interactions create autistic symptoms should facilitate the development of therapeutic targeting of gene expression for ASD biomedical care.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Second University of Naples; via S. Maria di Costantinopoli, Napoli 16-80138, Italy
- Centre for Autism—La Forza del Silenzio, Caserta 81036, Italy
- Cancellautismo—Non-Profit Association for Autism Care, Florence 50132, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0-81-566-5880; Fax: +39-0-81-566-7503
| | - Alessandra Cirillo
- Institute of Protein Biochemistry, National Research Council of Italy; Naples 80128, Italy; E-Mail:
| | | | - Nicola Antonucci
- Biomedical Centre for Autism Research and Treatment, Bari 70126, Italy; E-Mail:
| |
Collapse
|