1
|
Li L, An G, Li F, Zhang D, Zhu X, Liang C, Zhao Y, Xie K, Zhou P, Zhu H, Jin X, Du L. Shared Genes and Pathways in Ulcerative Colitis and Ankylosing Spondylitis: Functional Validation and Implications for Diagnosis. J Inflamm Res 2025; 18:1657-1678. [PMID: 39925932 PMCID: PMC11806757 DOI: 10.2147/jir.s497201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
Background Associations between ulcerative colitis (UC) and ankylosing spondylitis (AS) have been reported in multiple studies, but the common etiologies of UC and AS remain unknown. Thus, in the current study, we aimed to investigate the shared genes and relevant mechanisms in UC and AS. Methods Using datasets for UC (GSE113079) and AS (GSE1797879), we initially identified differentially expressed genes (DEGs) through differential expression analysis. The DEGs from both datasets were intersected to identify common DEGs, relevant to both UC and AS, which were used in receiver operating characteristic (ROC) curve analysis to confirm key genes in the shared pathway. Gene set enrichment analysis (GSEA) was used to obtain information on key gene pathways and interactions with UC or AS-related diseases, followed by immune infiltration analysis. Finally, peripheral blood samples of AS and UC were used to verify the mRNA expression of the eight key genes using reverse transcription-polymerase chain reaction (RT-PCR). Results Our results revealed that GMFG, GNG11, CLEC4D, CMTM2, VAMP5, S100A8, S100A12 and DGKQ are potential diagnostic biomarkers of AS and UC. Rimegepant, eptinezumab, methotrexate, atogepant, and ubrogepant were identified as potential drugs for S100A12 and S100A8 in patients with UC and AS. GSEA showed that these key genes were associated with antigen processing and presentation, natural killer cell mediated cytotoxicity and the T cell receptor signaling pathway in AS and UC, and were significantly associated with immune cells in various immune-related pathways. Subsequent functional experiments revealed significant increases in the mRNA expressions of S100A12 and VAMP5 in patients with AS and UC. Additionally, CLEC4D mRNA expression was notably higher in patients with UC than in healthy controls. Conclusion Key genes and shared pathways were identified in UC and AS, which may improve understanding of their relationship and guide diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Lin Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Guangqi An
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Fuzhen Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Donghui Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Xinyue Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Chunyu Liang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Yu Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Kunpeng Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Pengyi Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Haiyan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
2
|
Zeng L, Yang K, Yu G, Hao W, Zhu X, Ge A, Chen J, Sun L. Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases. Cell Death Dis 2024; 15:481. [PMID: 38965216 PMCID: PMC11224426 DOI: 10.1038/s41419-024-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Autoimmune diseases commonly affect various systems, but their etiology and pathogenesis remain unclear. Currently, increasing research has highlighted the role of ferroptosis in immune regulation, with immune cells being a crucial component of the body's immune system. This review provides an overview and discusses the relationship between ferroptosis, programmed cell death in immune cells, and autoimmune diseases. Additionally, it summarizes the role of various key targets of ferroptosis, such as GPX4 and TFR, in immune cell immune responses. Furthermore, the release of multiple molecules, including damage-associated molecular patterns (DAMPs), following cell death by ferroptosis, is examined, as these molecules further influence the differentiation and function of immune cells, thereby affecting the occurrence and progression of autoimmune diseases. Moreover, immune cells secrete immune factors or their metabolites, which also impact the occurrence of ferroptosis in target organs and tissues involved in autoimmune diseases. Iron chelators, chloroquine and its derivatives, antioxidants, chloroquine derivatives, and calreticulin have been demonstrated to be effective in animal studies for certain autoimmune diseases, exerting anti-inflammatory and immunomodulatory effects. Finally, a brief summary and future perspectives on the research of autoimmune diseases are provided, aiming to guide disease treatment strategies.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- College of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
López-Machado A, Díaz N, Cano A, Espina M, Badía J, Baldomà L, Calpena AC, Biancardi M, Souto EB, García ML, Sánchez-López E. Development of topical eye-drops of lactoferrin-loaded biodegradable nanoparticles for the treatment of anterior segment inflammatory processes. Int J Pharm 2021; 609:121188. [PMID: 34655707 DOI: 10.1016/j.ijpharm.2021.121188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Ocular inflammation is one of the most common comorbidities associated to ophthalmic surgeries and disorders. Since conventional topical ophthalmic treatments present disadvantages such as low bioavailability and relevant side effects, natural alternatives constitute an unmet medical need. In this sense, lactoferrin, a high molecular weight protein, is a promising alternative against inflammation. However, lactoferrin aqueous instability and high nasolacrimal duct drainage compromises its potential effectiveness. Moreover, nanotechnology has led to an improvement in the administration of active compounds with compromised biopharmaceutical profiles. Here, we incorporate lactoferrin into biodegradable polymeric nanoparticles and optimized the formulation using the design of experiments approach. A monodisperse nanoparticles population was obtained with an average size around 130 nm and positive surface charge. Pharmacokinetic and pharmacodynamic behaviour were improved by the nanoparticles showing a prolonged lactoferrin release profile. Lactoferrin nanoparticles were non-cytotoxic and non-irritant neither in vitro nor in vivo. Moreover, nanoparticles exhibited significantly increased anti-inflammatory efficacy in cell culture and preclinical assays. In conclusion, lactoferrin loaded nanoparticles constitute a safe and novel nanotechnological tool suitable for the treatment of ocular inflammation.
Collapse
Affiliation(s)
- Ana López-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Natalia Díaz
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Josefa Badía
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
4
|
Development of Lactoferrin-Loaded Liposomes for the Management of Dry Eye Disease and Ocular Inflammation. Pharmaceutics 2021; 13:pharmaceutics13101698. [PMID: 34683990 PMCID: PMC8539938 DOI: 10.3390/pharmaceutics13101698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED) is a high prevalent multifactorial disease characterized by a lack of homeostasis of the tear film which causes ocular surface inflammation, soreness, and visual disturbance. Conventional ophthalmic treatments present limitations such as low bioavailability and side effects. Lactoferrin (LF) constitutes a promising therapeutic tool, but its poor aqueous stability and high nasolacrimal duct drainage hinder its potential efficacy. In this study, we incorporate lactoferrin into hyaluronic acid coated liposomes by the lipid film method, followed by high pressure homogenization. Pharmacokinetic and pharmacodynamic profiles were evaluated in vitro and ex vivo. Cytotoxicity and ocular tolerance were assayed both in vitro and in vivo using New Zealand rabbits, as well as dry eye and anti-inflammatory treatments. LF loaded liposomes showed an average size of 90 nm, monomodal population, positive surface charge and a high molecular weight protein encapsulation of 53%. Biopharmaceutical behaviour was enhanced by the nanocarrier, and any cytotoxic effect was studied in human corneal epithelial cells. Developed liposomes revealed the ability to reverse dry eye symptoms and possess anti-inflammatory efficacy, without inducing ocular irritation. Hence, lactoferrin loaded liposomes could offer an innovative nanotechnological tool as suitable approach in the treatment of DED.
Collapse
|
5
|
Dickson K, Liu S, Zhou J, Langille M, Holbein BE, Lehmann C. Selective sensitivity of the gut microbiome to iron chelators in polybacterial abdominal sepsis. Med Hypotheses 2018; 120:68-71. [PMID: 30220344 DOI: 10.1016/j.mehy.2018.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 01/09/2023]
Abstract
Iron chelation has been proposed as a potential therapy for polybacterial abdominal sepsis. Treatment with iron chelation is known to be able to attenuate bacterial growth. It is hypothesized that the different types of bacteria will exhibit variations in their sensitivity to iron chelation based on differences in their iron metabolism. Bacteria with weaker iron access systems might have their growth reduced initially, but stronger species may also be suppressed. Gram-positive and Gram-negative bacteria are known to possess different iron acquisition systems, which may affect their response to iron chelation. Bacteria which can produce siderophores are at a particular advantage for iron acquisition. Novel iron chelators, which do not act as xenosiderophores, may be effective in depriving these bacteria of iron. This has implications for the treatment of polybacterial sepsis, which might be enhanced if the sensitivity to iron chelation of the primary causative agents is known.
Collapse
Affiliation(s)
- Kayle Dickson
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | - Simo Liu
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
| | - Morgan Langille
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | - Bruce E Holbein
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada; Department of Pharmacology, Dalhousie University, Halifax, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada.
| |
Collapse
|