1
|
Xu M, Kiss AJ, Jones JA, McMurray MS, Shi H. Effect of oral tryptamines on the gut microbiome of rats-a preliminary study. PeerJ 2024; 12:e17517. [PMID: 38846751 PMCID: PMC11155674 DOI: 10.7717/peerj.17517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
Background Psilocybin and related tryptamines have come into the spotlight in recent years as potential therapeutics for depression. Research on the mechanisms of these effects has historically focused on the direct effects of these drugs on neural processes. However, in addition to such neural effects, alterations in peripheral physiology may also contribute to their therapeutic effects. In particular, substantial support exists for a gut microbiome-mediated pathway for the antidepressant efficacy of other drug classes, but no prior studies have determined the effects of tryptamines on microbiota. Methods To address this gap, in this preliminary study, male Long Evans rats were treated with varying dosages of oral psilocybin (0.2 or 2 mg/kg), norbaeocystin (0.25 or 2.52 mg/kg), or vehicle and their fecal samples were collected 1 week and 3 weeks after exposure for microbiome analysis using integrated 16S ribosomal DNA sequencing to determine gut microbiome composition. Results We found that although treatment with neither psilocybin nor norbaeocystin significantly affected overall microbiome diversity, it did cause significant dose- and time-dependent changes in bacterial abundance at the phylum level, including increases in Verrucomicrobia and Actinobacteria, and decreases in Proteobacteria. Conclusion and Implications These preliminary findings support the idea that psilocybin and other tryptamines may act on the gut microbiome in a dose- and time-dependent manner, potentially identifying a novel peripheral mechanism for their antidepressant activity. The results from this preliminary study also suggest that norbaeocystin may warrant further investigation as a potential antidepressant, given the similarity of its effects to psilocybin.
Collapse
Affiliation(s)
- Mengyang Xu
- Biology, Miami University, Oxford, OH, United States
| | - Andor J. Kiss
- Center for Bioinformatics and Functional Genomics, Miami University, Oxford, OH, United States
| | - J. Andrew Jones
- Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, United States
| | | | - Haifei Shi
- Biology, Miami University, Oxford, OH, United States
| |
Collapse
|
2
|
Armstrong M, Castellanos J, Christie D. Chronic pain as an emergent property of a complex system and the potential roles of psychedelic therapies. FRONTIERS IN PAIN RESEARCH 2024; 5:1346053. [PMID: 38706873 PMCID: PMC11066302 DOI: 10.3389/fpain.2024.1346053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Despite research advances and urgent calls by national and global health organizations, clinical outcomes for millions of people suffering with chronic pain remain poor. We suggest bringing the lens of complexity science to this problem, conceptualizing chronic pain as an emergent property of a complex biopsychosocial system. We frame pain-related physiology, neuroscience, developmental psychology, learning, and epigenetics as components and mini-systems that interact together and with changing socioenvironmental conditions, as an overarching complex system that gives rise to the emergent phenomenon of chronic pain. We postulate that the behavior of complex systems may help to explain persistence of chronic pain despite current treatments. From this perspective, chronic pain may benefit from therapies that can be both disruptive and adaptive at higher orders within the complex system. We explore psychedelic-assisted therapies and how these may overlap with and complement mindfulness-based approaches to this end. Both mindfulness and psychedelic therapies have been shown to have transdiagnostic value, due in part to disruptive effects on rigid cognitive, emotional, and behavioral patterns as well their ability to promote neuroplasticity. Psychedelic therapies may hold unique promise for the management of chronic pain.
Collapse
Affiliation(s)
- Maya Armstrong
- Department of Family & Community Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Joel Castellanos
- Division of Pain Medicine, Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Devon Christie
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Sharma R, Batchelor R, Sin J. Psychedelic Treatments for Substance Use Disorder and Substance Misuse: A Mixed Methods Systematic Review. J Psychoactive Drugs 2023; 55:612-630. [PMID: 36933948 DOI: 10.1080/02791072.2023.2190319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 03/20/2023]
Abstract
Renewed interest in psychedelic substances in the 21st century has seen the exploration of psychedelic treatments for various psychiatric disorders including substance use disorder (SUD). This review aimed to assess the effectiveness of psychedelic treatments for people with SUD and those falling below diagnostic thresholds (i.e. substance misuse). We systematically searched 11 databases, trial registries, and psychedelic organization websites for empirical studies examining adults undergoing psychedelic treatment for SUD or substance misuse, published in the English language, between 2000 and 2021. Seven studies investigating treatment using psilocybin, ibogaine, and ayahuasca, alone or adjunct with psychotherapy reported across 10 papers were included. Measures of abstinence, substance use, psychological and psychosocial outcomes, craving, and withdrawal reported positive results, however, this data was scarce among studies examining a wide range of addictions including opioid, nicotine, alcohol, cocaine and unspecified substance. The qualitative synthesis from three studies described subjective experience of psychedelic-assisted treatments enhanced self-awareness, insight, and confidence. At present, there is no sufficient research evidence to suggest effectiveness of any of the psychedelics on any specific substance use disorder or substance misuse. Further research using rigorous effectiveness evaluation methods with larger sample sizes and longer-term follow-up is required.
Collapse
Affiliation(s)
| | - Rachel Batchelor
- School of Health and Psychological Sciences, City, University of London, England, London, UK
| | - Jacqueline Sin
- School of Health and Psychological Sciences, City, University of London, England, London, UK
| |
Collapse
|
4
|
Mason NL, Szabo A, Kuypers KPC, Mallaroni PA, de la Torre Fornell R, Reckweg JT, Tse DHY, Hutten NRPW, Feilding A, Ramaekers JG. Psilocybin induces acute and persisting alterations in immune status in healthy volunteers: An experimental, placebo-controlled study. Brain Behav Immun 2023; 114:299-310. [PMID: 37689275 DOI: 10.1016/j.bbi.2023.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Patients characterized by stress-related disorders such as depression display elevated circulating concentrations of pro-inflammatory cytokines and a hyperactive HPA axis. Psychedelics are demonstrating promising results in treatment of such disorders, however the mechanisms of their therapeutic effects are still unknown. To date the evidence of acute and persisting effects of psychedelics on immune functioning, HPA axis activity in response to stress, and associated psychological outcomes is preliminary. To address this, we conducted a placebo-controlled, parallel group design comprising of 60 healthy participants who received either placebo (n = 30) or 0.17 mg/kg psilocybin (n = 30). Blood samples were taken to assess acute and persisting (7 day) changes in immune status. Seven days' post-administration, participants in each treatment group were further subdivided: 15 underwent a stress induction protocol, and 15 underwent a control protocol. Ultra-high field (7-Tesla) magnetic resonance spectroscopy was used to assess whether acute changes in glutamate or glial activity were associated with changes in immune functioning. Finally, questionnaires assessed persisting self-report changes in mood and social behavior. Psilocybin immediately reduced concentrations of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), while other inflammatory markers (interleukin (IL)- 1β, IL-6, and C-reactive protein (CRP)) remained unchanged. Seven days later, TNF-α concentrations returned to baseline, while IL-6 and CRP concentrations were persistently reduced in the psilocybin group. Changes in the immune profile were related to acute neurometabolic activity as acute reductions in TNF-α were linked to lower concentrations of glutamate in the hippocampus. Additionally, the more of a reduction in IL-6 and CRP seven days after psilocybin, the more persisting positive mood and social effects participants reported. Regarding the stress response, after a psychosocial stressor, psilocybin did not significantly alter the stress response. Results are discussed in regards to the psychological and therapeutic effects of psilocybin demonstrated in ongoing patient trials.
Collapse
Affiliation(s)
- N L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - A Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - P A Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - R de la Torre Fornell
- Integrative Pharmacology and Systems Neurosciences Research Group. Neurosciences Program. Hospital del Mar Medical Research Institute. Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra. Dr. Aiguader 88, 08003 Barcelona, Spain
| | - J T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - D H Y Tse
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - N R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - A Feilding
- The Beckley Foundation, Beckley Park, Oxford, OX3 9SY, United Kingdom
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
5
|
Acero VP, Cribas ES, Browne KD, Rivellini O, Burrell JC, O’Donnell JC, Das S, Cullen DK. Bedside to bench: the outlook for psychedelic research. Front Pharmacol 2023; 14:1240295. [PMID: 37869749 PMCID: PMC10588653 DOI: 10.3389/fphar.2023.1240295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
There has recently been a resurgence of interest in psychedelic compounds based on studies demonstrating their potential therapeutic applications in treating post-traumatic stress disorder, substance abuse disorders, and treatment-resistant depression. Despite promising efficacy observed in some clinical trials, the full range of biological effects and mechanism(s) of action of these compounds have yet to be fully established. Indeed, most studies to date have focused on assessing the psychological mechanisms of psychedelics, often neglecting the non-psychological modes of action. However, it is important to understand that psychedelics may mediate their therapeutic effects through multi-faceted mechanisms, such as the modulation of brain network activity, neuronal plasticity, neuroendocrine function, glial cell regulation, epigenetic processes, and the gut-brain axis. This review provides a framework supporting the implementation of a multi-faceted approach, incorporating in silico, in vitro and in vivo modeling, to aid in the comprehensive understanding of the physiological effects of psychedelics and their potential for clinical application beyond the treatment of psychiatric disorders. We also provide an overview of the literature supporting the potential utility of psychedelics for the treatment of brain injury (e.g., stroke and traumatic brain injury), neurodegenerative diseases (e.g., Parkinson's and Alzheimer's diseases), and gut-brain axis dysfunction associated with psychiatric disorders (e.g., generalized anxiety disorder and major depressive disorder). To move the field forward, we outline advantageous experimental frameworks to explore these and other novel applications for psychedelics.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily S. Cribas
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Calder A, Mock S, Friedli N, Pasi P, Hasler G. Psychedelics in the treatment of eating disorders: Rationale and potential mechanisms. Eur Neuropsychopharmacol 2023; 75:1-14. [PMID: 37352816 DOI: 10.1016/j.euroneuro.2023.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/25/2023]
Abstract
Eating disorders are serious illnesses showing high rates of mortality and comorbidity with other mental health problems. Psychedelic-assisted therapy has recently shown potential in the treatment of several common comorbidities of eating disorders, including mood disorders, post-traumatic stress disorder, and substance use disorders. The theorized therapeutic mechanisms of psychedelic-assisted therapy suggest that it could be beneficial in the treatment of eating disorders as well. In this review, we summarize preliminary data on the efficacy of psychedelic-assisted therapy in people with anorexia nervosa, bulimia nervosa, and binge eating disorder, which include studies and case reports of psychedelic-assisted therapy with ketamine, MDMA, psilocybin, and ayahuasca. We then discuss the potential therapeutic mechanisms of psychedelic-assisted therapy in these three eating disorders, including both general therapeutic mechanisms and those which are relatively specific to eating disorders. We find preliminary evidence that psychedelic-assisted therapy may be effective in the treatment of anorexia nervosa and bulimia nervosa, with very little data available on binge eating disorder. Regarding mechanisms, psychedelic-assisted therapy may be able to improve beliefs about body image, normalize reward processing, promote cognitive flexibility, and facilitate trauma processing. Just as importantly, it appears to promote general therapeutic factors relevant to both eating disorders and many of their common comorbidities. Lastly, we discuss potential safety concerns which may be associated with these treatments and present recommendations for future research.
Collapse
Affiliation(s)
- Abigail Calder
- University Center for Psychiatric Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Switzerland
| | - Seline Mock
- University Center for Psychiatric Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Switzerland
| | - Nicole Friedli
- University Center for Psychiatric Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Switzerland
| | - Patrick Pasi
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Gregor Hasler
- University Center for Psychiatric Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Switzerland.
| |
Collapse
|
7
|
Sharma P, Nguyen QA, Matthews SJ, Carpenter E, Mathews DB, Patten CA, Hammond CJ. Psilocybin history, action and reaction: A narrative clinical review. J Psychopharmacol 2023; 37:849-865. [PMID: 37650489 DOI: 10.1177/02698811231190858] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Hallucinogenic mushrooms have been used in religious and cultural ceremonies for centuries. Of late, psilocybin, the psychoactive compound in hallucinogenic mushrooms, has received increased public interest as a novel drug for treating mood and substance use disorders (SUDs). In addition, in recent years, some states in the United States have legalized psilocybin for medical and recreational use. Given this, clinicians need to understand the potential benefits and risks related to using psilocybin for therapeutic purposes so that they can accurately advise patients. This expert narrative review summarizes the scientific basis and clinical evidence on the safety and efficacy of psilocybin-assisted therapy for treating psychiatric disorders and SUDs. The results of this review are structured as a more extensive discussion about psilocybin's history, putative mechanisms of action, and recent legislative changes to its legal status. There is modest evidence of psilocybin-assisted therapy for treating depression and anxiety disorders. In addition, early data suggest that psilocybin-assisted therapy may effectively reduce harmful drinking in patients with alcohol use disorders. The evidence further suggests psilocybin, when administered under supervision (psilocybin-assisted therapy), the side effects experienced are mild and transient. The occurrence of severe adverse events following psilocybin administration is uncommon. Still, a recent clinical trial found that individuals in the psilocybin arm had increased suicidal ideations and non-suicidal self-injurious behaviors. Given this, further investigation into the safety and efficacy of psilocybin-assisted therapy is warranted to determine which patient subgroups are most likely to benefit and which are most likely to experience adverse outcomes related to its use.
Collapse
Affiliation(s)
- Pravesh Sharma
- Department of Psychiatry and Psychology, Mayo Clinic Health System, Eau Claire, WI, USA
- Behavioral Health Research Program, Department of Psychology and Psychiatry Research, Mayo Clinic, Rochester, MN, USA
| | - Quang Anh Nguyen
- Behavioral Health Research Program, Department of Psychology and Psychiatry Research, Mayo Clinic, Rochester, MN, USA
| | - Sadie J Matthews
- Department of Psychology, University of Wisconsin (Eau Claire), Eau Claire, WI, USA
| | | | - Douglas B Mathews
- Department of Psychology, University of Wisconsin (Eau Claire), Eau Claire, WI, USA
| | - Christi A Patten
- Behavioral Health Research Program, Department of Psychology and Psychiatry Research, Mayo Clinic, Rochester, MN, USA
| | - Christopher J Hammond
- Division of Child and Adolescent Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Korczak M, Pilecki M, Granica S, Gorczynska A, Pawłowska KA, Piwowarski JP. Phytotherapy of mood disorders in the light of microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154642. [PMID: 36641978 DOI: 10.1016/j.phymed.2023.154642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 11/22/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clinical research in natural product-based psychopharmacology has revealed a variety of promising herbal medicines that may provide benefit in the treatment of mild mood disorders, however failed to unambiguously indicate pharmacologically active constituents. The emerging role of the microbiota-gut-brain axis opens new possibilities in the search for effective methods of treatment and prevention of mood disorders. PURPOSE Considering the clinically proven effectiveness juxtaposed with inconsistencies regarding the indication of active principles for many medicinal plants applied in the treatment of anxiety and depression, the aim of the review is to look at their therapeutic properties from the perspective of the microbiota-gut-brain axis. METHOD A literature-based survey was performed using Scopus, Pubmed, and Google Scholar databases. The current state of knowledge regarding Hypericum perforatum, Valeriana officinalis, Piper methysticum, Passiflora incarnata, Humulus lupulus, Melissa officinalis, Lavandula officinalis, and Rhodiola rosea in terms of their antimicrobial activity, bioavailability, clinical effectiveness in depression/anxiety and gut microbiota - natural products interaction was summarized and analyzed. RESULTS Recent studies have provided direct and indirect evidence that herbal extracts and isolated compounds are potent modulators of gut microbiota structure. Additionally, some of the formed postbiotic metabolites exert positive effects and ameliorate depression-related behaviors in animal models of mood disorders. The review underlines the gap in research on natural products - gut microbiota interaction in the context of mood disorders. CONCLUSION Modification of microbiota-gut-brain axis by natural products is a plausible explanation of their therapeutic properties. Future studies evaluating the effectiveness of herbal medicine and isolated compounds in treating mild mood disorders should consider the bidirectional interplay between phytoconstituents and the gut microbiota community.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gorczynska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina A Pawłowska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
10
|
Politi M, Tresca G, Menghini L, Ferrante C. Beyond the Psychoactive Effects of Ayahuasca: Cultural and Pharmacological Relevance of Its Emetic and Purging Properties. PLANTA MEDICA 2022; 88:1275-1286. [PMID: 34794194 DOI: 10.1055/a-1675-3840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The herbal preparation ayahuasca has been an important part of ritual and healing practices, deployed to access invisible worlds in several indigenous groups in the Amazon basin and among mestizo populations of South America. The preparation is usually known to be composed of two main plants, Banisteriopsis caapi and Psychotria viridis, which produce both hallucinogenic and potent purging and emetic effects; currently, these are considered its major pharmacological activities. In recent decades, the psychoactive and visionary effect of ayahuasca has been highly sought after by the shamanic tourism community, which led to the popularization of ayahuasca use globally and to a cultural distancing from its traditional cosmological meanings, including that of purging and emesis. Further, the field of ethnobotany and ethnopharmacology has also produced relatively limited data linking the phytochemical diversity of ayahuasca with the different degrees of its purging and emetic versus psychoactive effects. Similarly, scientific interest has also principally addressed the psychological and mental health effects of ayahuasca, overlooking the cultural and pharmacological importance of the purging and emetic activity. The aim of this review is therefore to shed light on the understudied purging and emetic effect of ayahuasca herbal preparation. It firstly focuses on reviewing the cultural relevance of emesis and purging in the context of Amazonian traditions. Secondly, on the basis of the main known phytochemicals described in the ayahuasca formula, a comprehensive pharmacological evaluation of their emetic and purging properties is presented.
Collapse
Affiliation(s)
- Matteo Politi
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
- Research Department, Center for Drug Addiction Treatment and Research on Traditional Medicines - Takiwasi, Tarapoto, Peru
| | - Giorgia Tresca
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| |
Collapse
|
11
|
Simpson S, Mclellan R, Wellmeyer E, Matalon F, George O. Drugs and Bugs: The Gut-Brain Axis and Substance Use Disorders. J Neuroimmune Pharmacol 2022; 17:33-61. [PMID: 34694571 PMCID: PMC9074906 DOI: 10.1007/s11481-021-10022-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorders (SUDs) represent a significant public health crisis. Worldwide, 5.4% of the global disease burden is attributed to SUDs and alcohol use, and many more use psychoactive substances recreationally. Often associated with comorbidities, SUDs result in changes to both brain function and physiological responses. Mounting evidence calls for a precision approach for the treatment and diagnosis of SUDs, and the gut microbiome is emerging as a contributor to such disorders. Over the last few centuries, modern lifestyles, diets, and medical care have altered the health of the microbes that live in and on our bodies; as we develop, our diets and lifestyle dictate which microbes flourish and which microbes vanish. An increase in antibiotic treatments, with many antibiotic interventions occurring early in life during the microbiome's normal development, transforms developing microbial communities. Links have been made between the microbiome and SUDs, and the microbiome and conditions that are often comorbid with SUDs such as anxiety, depression, pain, and stress. A better understanding of the mechanisms influencing behavioral changes and drug use is critical in developing novel treatments for SUDSs. Targeting the microbiome as a therapeutic and diagnostic tool is a promising avenue of exploration. This review will provide an overview of the role of the gut-brain axis in a wide range of SUDs, discuss host and microbe pathways that mediate changes in the brain's response to drugs, and the microbes and related metabolites that impact behavior and health within the gut-brain axis.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US.
| | - Rio Mclellan
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Emma Wellmeyer
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Frederic Matalon
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| |
Collapse
|
12
|
Kasindi A, Fuchs DT, Koronyo Y, Rentsendorj A, Black KL, Koronyo-Hamaoui M. Glatiramer Acetate Immunomodulation: Evidence of Neuroprotection and Cognitive Preservation. Cells 2022; 11:1578. [PMID: 35563884 PMCID: PMC9099707 DOI: 10.3390/cells11091578] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Novel, neuroprotective uses of Copaxone (generic name: glatiramer acetate-GA) are being examined, primarily in neurological conditions involving cognitive decline. GA is a well-studied synthetic copolymer that is FDA-approved for immune-based treatment of relapsing remitting multiple sclerosis (RRMS). Clinical studies have explored the potential mechanism of action (MOA) and outcomes of GA immunization in patients. Furthermore, results from these and animal studies suggest that GA has a direct immunomodulatory effect on adaptive and innate immune cell phenotypes and responses. These MOAs have been postulated to have a common neuroprotective impact in several neuroinflammatory and neurodegenerative diseases. Notably, several clinical studies report that the use of GA mitigated MS-associated cognitive decline. Its propensity to ameliorate neuro-proinflammatory and degenerative processes ignites increased interest in potential alternate uses such as in age-related macular degeneration (AMD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Preclinical studies are exploring less frequent subcutaneous administration of GA, such as once weekly or monthly or a single dosing regimen. Indeed, cognitive functions were found to be either preserved, reversed, or improved after the less frequent treatment regimens with GA in animal models of AD. In this systematic review, we examine the potential novel uses of GA across clinical and pre-clinical studies, with evidence for its beneficial impact on cognition. Future investigation in large-size, double-blind clinical trials is warranted to establish the impact of GA immunomodulation on neuroprotection and cognitive preservation in various neurological conditions.
Collapse
Affiliation(s)
- Arielle Kasindi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.K.); (D.-T.F.); (Y.K.); (A.R.); (K.L.B.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
13
|
Ko K, Knight G, Rucker JJ, Cleare AJ. Psychedelics, Mystical Experience, and Therapeutic Efficacy: A Systematic Review. Front Psychiatry 2022; 13:917199. [PMID: 35923458 PMCID: PMC9340494 DOI: 10.3389/fpsyt.2022.917199] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The mystical experience is a potential psychological mechanism to influence outcome in psychedelic therapy. It includes features such as oceanic boundlessness, ego dissolution, and universal interconnectedness, which have been closely linked to both symptom reduction and improved quality of life. In this review, 12 studies of psychedelic therapy utilizing psilocybin, ayahuasca, or ketamine were analyzed for association between mystical experience and symptom reduction, in areas as diverse as cancer-related distress, substance use disorder, and depressive disorders to include treatment-resistant. Ten of the twelve established a significant association of correlation, mediation, and/or prediction. A majority of the studies are limited, however, by their small sample size and lack of diversity (gender, ethnic, racial, educational, and socioeconomic), common in this newly re-emerging field. Further, 6 out of 12 studies were open-label in design and therefore susceptible to bias. Future studies of this nature should consider a larger sample size with greater diversity and thus representation by use of randomized design. More in-depth exploration into the nature of mystical experience is needed, including predictors of intensity, in order to maximize its positive effects on treatment outcome benefits and minimize concomitant anxiety. Systematic Review Registration: PROSPERO, identifier CRD42021261752.
Collapse
Affiliation(s)
- Kwonmok Ko
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Gemma Knight
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - James J Rucker
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom.,South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, United Kingdom
| | - Anthony J Cleare
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, United Kingdom.,South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, United Kingdom
| |
Collapse
|
14
|
Kelly JR, Gillan CM, Prenderville J, Kelly C, Harkin A, Clarke G, O'Keane V. Psychedelic Therapy's Transdiagnostic Effects: A Research Domain Criteria (RDoC) Perspective. Front Psychiatry 2021; 12:800072. [PMID: 34975593 PMCID: PMC8718877 DOI: 10.3389/fpsyt.2021.800072] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating clinical evidence shows that psychedelic therapy, by synergistically combining psychopharmacology and psychological support, offers a promising transdiagnostic treatment strategy for a range of disorders with restricted and/or maladaptive habitual patterns of emotion, cognition and behavior, notably, depression (MDD), treatment resistant depression (TRD) and addiction disorders, but perhaps also anxiety disorders, obsessive-compulsive disorder (OCD), Post-Traumatic Stress Disorder (PTSD) and eating disorders. Despite the emergent transdiagnostic evidence, the specific clinical dimensions that psychedelics are efficacious for, and associated underlying neurobiological pathways, remain to be well-characterized. To this end, this review focuses on pre-clinical and clinical evidence of the acute and sustained therapeutic potential of psychedelic therapy in the context of a transdiagnostic dimensional systems framework. Focusing on the Research Domain Criteria (RDoC) as a template, we will describe the multimodal mechanisms underlying the transdiagnostic therapeutic effects of psychedelic therapy, traversing molecular, cellular and network levels. These levels will be mapped to the RDoC constructs of negative and positive valence systems, arousal regulation, social processing, cognitive and sensorimotor systems. In summarizing this literature and framing it transdiagnostically, we hope we can assist the field in moving toward a mechanistic understanding of how psychedelics work for patients and eventually toward a precise-personalized psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Department of Psychiatry, Tallaght University Hospital, Dublin, Ireland
| | - Claire M. Gillan
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Psychology, Trinity College, Dublin, Ireland
- Global Brain Health Institute, Trinity College, Dublin, Ireland
| | - Jack Prenderville
- Transpharmation Ireland Ltd, Institute of Neuroscience, Trinity College, Dublin, Ireland
- Discipline of Physiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Clare Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Psychology, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Department of Psychiatry, Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
15
|
Rodríguez Arce JM, Winkelman MJ. Psychedelics, Sociality, and Human Evolution. Front Psychol 2021; 12:729425. [PMID: 34659037 PMCID: PMC8514078 DOI: 10.3389/fpsyg.2021.729425] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Our hominin ancestors inevitably encountered and likely ingested psychedelic mushrooms throughout their evolutionary history. This assertion is supported by current understanding of: early hominins' paleodiet and paleoecology; primate phylogeny of mycophagical and self-medicative behaviors; and the biogeography of psilocybin-containing fungi. These lines of evidence indicate mushrooms (including bioactive species) have been a relevant resource since the Pliocene, when hominins intensified exploitation of forest floor foods. Psilocybin and similar psychedelics that primarily target the serotonin 2A receptor subtype stimulate an active coping strategy response that may provide an enhanced capacity for adaptive changes through a flexible and associative mode of cognition. Such psychedelics also alter emotional processing, self-regulation, and social behavior, often having enduring effects on individual and group well-being and sociality. A homeostatic and drug instrumentalization perspective suggests that incidental inclusion of psychedelics in the diet of hominins, and their eventual addition to rituals and institutions of early humans could have conferred selective advantages. Hominin evolution occurred in an ever-changing, and at times quickly changing, environmental landscape and entailed advancement into a socio-cognitive niche, i.e., the development of a socially interdependent lifeway based on reasoning, cooperative communication, and social learning. In this context, psychedelics' effects in enhancing sociality, imagination, eloquence, and suggestibility may have increased adaptability and fitness. We present interdisciplinary evidence for a model of psychedelic instrumentalization focused on four interrelated instrumentalization goals: management of psychological distress and treatment of health problems; enhanced social interaction and interpersonal relations; facilitation of collective ritual and religious activities; and enhanced group decision-making. The socio-cognitive niche was simultaneously a selection pressure and an adaptive response, and was partially constructed by hominins through their activities and their choices. Therefore, the evolutionary scenario put forward suggests that integration of psilocybin into ancient diet, communal practice, and proto-religious activity may have enhanced hominin response to the socio-cognitive niche, while also aiding in its creation. In particular, the interpersonal and prosocial effects of psilocybin may have mediated the expansion of social bonding mechanisms such as laughter, music, storytelling, and religion, imposing a systematic bias on the selective environment that favored selection for prosociality in our lineage.
Collapse
Affiliation(s)
| | - Michael James Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
16
|
Gorman I, Nielson EM, Molinar A, Cassidy K, Sabbagh J. Psychedelic Harm Reduction and Integration: A Transtheoretical Model for Clinical Practice. Front Psychol 2021; 12:645246. [PMID: 33796055 PMCID: PMC8008322 DOI: 10.3389/fpsyg.2021.645246] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Psychedelic Harm Reduction and Integration (PHRI) is a transtheoretical and transdiagnostic clinical approach to working with patients who are using or considering using psychedelics in any context. The ongoing discussion of psychedelics in academic research and mainstream media, coupled with recent law enforcement deprioritization of psychedelics and compassionate use approvals for psychedelic-assisted therapy, make this model exceedingly timely. Given the prevalence of psychedelic use, the therapeutic potential of psychedelics, and the unique cultural and historical context in which psychedelics are placed, it is important that mental health providers have an understanding of the unique motivations, experiences, and needs of people who use them. PHRI incorporates elements of harm reduction psychotherapy and psychedelic-assisted psychotherapy, and can be applied in both brief and ongoing psychotherapy interactions. PHRI represents a shift away from assessment limited to untoward outcomes of psychedelic use and abstinence-based addiction treatment paradigms and toward a stance of compassionate, destigmatizing acceptance of patients' choices. Considerations for assessment, preparation, and working with difficult experiences are presented.
Collapse
Affiliation(s)
- Ingmar Gorman
- MAPS Public Benefit Corp, Santa Cruz, CA, United States
- Fluence, Woodstock, NY, United States
- Depression Evaluation Services, New York State Psychiatric Institute, New York, NY, United States
- Journey Clinical, Inc. Dover, DE, United States
| | - Elizabeth M. Nielson
- MAPS Public Benefit Corp, Santa Cruz, CA, United States
- Fluence, Woodstock, NY, United States
- Depression Evaluation Services, New York State Psychiatric Institute, New York, NY, United States
| | - Aja Molinar
- Todman Psychopathology Lab, Psychology Department, New School for Social Research, New York, NY, United States
| | - Ksenia Cassidy
- Todman Psychopathology Lab, Psychology Department, New School for Social Research, New York, NY, United States
- The Center for Attachment Research, Psychology Department, New School for Social Research, Attachment Lab, New York, NY, United States
| | - Jonathan Sabbagh
- Journey Clinical, Inc. Dover, DE, United States
- Todman Psychopathology Lab, Psychology Department, New School for Social Research, New York, NY, United States
| |
Collapse
|
17
|
Schindler EAD, Sewell RA, Gottschalk CH, Luddy C, Flynn LT, Lindsey H, Pittman BP, Cozzi NV, D'Souza DC. Exploratory Controlled Study of the Migraine-Suppressing Effects of Psilocybin. Neurotherapeutics 2021; 18:534-543. [PMID: 33184743 PMCID: PMC8116458 DOI: 10.1007/s13311-020-00962-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 01/26/2023] Open
Abstract
While anecdotal evidence suggests that select 5-hydroxytryptamine 2A (5-HT2A) receptor ligands, including psilocybin, may have long-lasting therapeutic effects after limited dosing in headache disorders, controlled investigations are lacking. In an exploratory double-blind, placebo-controlled, cross-over study, adults with migraine received oral placebo and psilocybin (0.143 mg/kg) in 2 test sessions spaced 2 weeks apart. Subjects maintained headache diaries starting 2 weeks before the first session until 2 weeks after the second session. Physiological and psychological drug effects were monitored during sessions and several follow-up contacts with subjects were carried out to assure safety of study procedures. Ten subjects were included in the final analysis. Over the 2-week period measured after single administration, the reduction in weekly migraine days from baseline was significantly greater after psilocybin (mean, - 1.65 (95% CI: - 2.53 to - 0.77) days/week) than after placebo (- 0.15 (- 1.13 to 0.83) days/week; p = 0.003, t(9) = 4.11). Changes in migraine frequency in the 2 weeks after psilocybin were not correlated with the intensity of acute psychotropic effects during drug administration. Psilocybin was well-tolerated; there were no unexpected or serious adverse events or withdrawals due to adverse events. This exploratory study suggests there is an enduring therapeutic effect in migraine headache after a single administration of psilocybin. The separation of acute psychotropic effects and lasting therapeutic effects is an important finding, urging further investigation into the mechanism underlying the clinical effects of select 5-HT2A receptor compounds in migraine, as well as other neuropsychiatric conditions. Clinicaltrials.gov : NCT03341689.
Collapse
Affiliation(s)
- Emmanuelle A D Schindler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Neurology Service, Veterans Affairs Connecticut Healthcare System, MS 127, 950 Campbell Avenue, West Haven, CT, 06516, USA.
- Veterans Affairs Headache Center of Excellence, West Haven, CT, USA.
| | - R Andrew Sewell
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | | - Christina Luddy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - L Taylor Flynn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hayley Lindsey
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Neurology Service, Veterans Affairs Connecticut Healthcare System, MS 127, 950 Campbell Avenue, West Haven, CT, 06516, USA
- Veterans Affairs Headache Center of Excellence, West Haven, CT, USA
| | - Brian P Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Nicholas V Cozzi
- Neuropharmacology Laboratory, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Alexander Shulgin Research Institute, Lafayette, CA, USA
| | - Deepak C D'Souza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
18
|
Matzopoulos R, Morlock R, Morlock A, Lerer B, Lerer L. Psychedelic Mushrooms in the USA: Knowledge, Patterns of Use, and Association With Health Outcomes. Front Psychiatry 2021; 12:780696. [PMID: 35046855 PMCID: PMC8761614 DOI: 10.3389/fpsyt.2021.780696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction: Popular media coverage of psychedelics use, growing research into this class of compounds for psychiatry and decriminalization initiatives, are transforming the public perception of psychedelics. However, little is known about levels of knowledge and psychedelic mushroom (PM) use among American adults. Methods: We examined PM use and various measures of health status, quality of life, and self-reported mental health outcome measures obtained through a national on-line, cross-sectional survey of adults with a demographic composition representative of the US adult population by region, gender, age, and race (weighted N = 251,297,495) from November 2020-March 2021. Results: General mental health and well-being were popular reasons for PM use (63.6%), although use for medically-diagnosed (31.8%) and self-diagnosed (19.0%) conditions was also common. PM users reported more depression and anxiety as reflected in higher GAD-7 and PHQ-9 scores. Factors predictive of PM use included being male [OR 1.54 95%CI 1.09-2.15] and having higher Charlson Comorbidity Index scores [OR 1.42; 95%CI 1.22-1.65]. Self-reported PM use was less likely among participants with health insurance [OR = 0.50 (0.35-0.72)], increased age [OR = 0.92 (0.90-0.93)] and, relative to those living in the west US census region, living in the northeast [OR = 0.27 (0.15-0.50)], midwest [OR = 0.34 (0.20-0.56)], and south [OR = 0.38 (0.26-0.55)]. Discussion and Conclusions: A significant number of Americans are already "self-medicating" with PM and as growing positive media coverage of psychedelics drives public interest in the health benefits of PM, this number will increase. The association between PM use and poor mental health requires further research to inform policy.
Collapse
Affiliation(s)
- Richard Matzopoulos
- Burden of Disease Research Unit, South African Medical Research Council, Cape Town, South Africa.,School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Amy Morlock
- Acumen Health Research Institute, Ann Arbor, MI, United States
| | - Bernard Lerer
- Biological Psychiatry Laboratory and Hadassah BrainLabs, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Leonard Lerer
- Back of the Yards Algae Sciences - Parow Entheobiosciences, Chicago, IL, United States
| |
Collapse
|
19
|
Thompson C, Szabo A. Psychedelics as a novel approach to treating autoimmune conditions. Immunol Lett 2020; 228:45-54. [PMID: 33035575 DOI: 10.1016/j.imlet.2020.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/12/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
With a rise in the incidence of autoimmune diseases (AiD), health care providers continue to seek out more efficacious treatment approaches for the AiD patient population. Classic serotonergic psychedelics have recently been gaining public and professional interest as novel interventions to a number of mental health afflictions. Psychedelics have also been shown to be able to modulate immune functions, however, while there has been great interest to researching into their psychotherapeutic applications, there has so far been very little exploration into the potential to treat inflammatory and immune-related diseases with these compounds. A handful of studies from a variety of fields suggest that psychedelics do indeed have effects in the body that may attenuate the outcome of AiD. This literature review explores existing evidence that psychedelic compounds may offer a potential novel application in the treatment of pathologies related to autoimmunity. We propose that psychedelics hold the potential to attenuate or even resolve autoimmunity by targeting psychosomatic origins, maladaptive chronic stress responses, inflammatory pathways, immune modulation and enteric microbiome populations.
Collapse
Affiliation(s)
| | - Attila Szabo
- NORMENT Center of Excellence (CoE), Institute of Clinical Medicine, University of Oslo, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
20
|
Abstract
The medium- to long-term consequences of COVID-19 are not yet known, though an increase in mental health problems are predicted. Multidisciplinary strategies across socio-economic and psychological levels may be needed to mitigate the mental health burden of COVID-19. Preliminary evidence from the rapidly progressing field of psychedelic science shows that psilocybin therapy offers a promising transdiagnostic treatment strategy for a range of disorders with restricted and maladaptive habitual patterns of cognition and behaviour, notably depression, addiction and obsessive compulsive disorder. The COMPASS Pathways (COMPASS) phase 2b double-blind trial of psilocybin therapy in antidepressant-free, treatment-resistant depression (TRD) is underway to determine the safety, efficacy and optimal dose of psilocybin. Results from the Imperial College London Psilodep-RCT comparing the efficacy and mechanisms of action of psilocybin therapy to the selective serotonin reuptake inhibitor (SSRI) escitalopram will soon be published. However, the efficacy and safety of psilocybin therapy in conjunction with SSRIs in TRD is not yet known. An additional COMPASS study, with a centre in Dublin, will begin to address this question, with potential implications for the future delivery of psilocybin therapy. While at a relatively early stage of clinical development, and notwithstanding the immense challenges of COVID-19, psilocybin therapy has the potential to play an important therapeutic role for various psychiatric disorders in post-COVID-19 clinical psychiatry.
Collapse
|
21
|
Kuypers KPC, Ng L, Erritzoe D, Knudsen GM, Nichols CD, Nichols DE, Pani L, Soula A, Nutt D. Microdosing psychedelics: More questions than answers? An overview and suggestions for future research. J Psychopharmacol 2019; 33:1039-1057. [PMID: 31303095 PMCID: PMC6732823 DOI: 10.1177/0269881119857204] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND In the past few years, the issue of 'microdosing' psychedelics has been openly discussed in the public arena where claims have been made about their positive effect on mood state and cognitive processes such as concentration. However, there are very few scientific studies that have specifically addressed this issue, and there is no agreed scientific consensus on what microdosing is. AIM This critique paper is designed to address questions that need to be answered by future scientific studies and to offer guidelines for these studies. APPROACH Owing to its proximity for a possible approval in clinical use and short-lasting pharmacokinetics, our focus is predominantly on psilocybin. Psilocybin is allegedly, next to lysergic acid diethylamide (LSD), one of the two most frequently used psychedelics to microdose. Where relevant and available, data for other psychedelic drugs are also mentioned. CONCLUSION It is concluded that while most anecdotal reports focus on the positive experiences with microdosing, future research should also focus on potential risks of (multiple) administrations of a psychedelic in low doses. To that end, (pre)clinical studies including biological (e.g. heart rate, receptor turnover and occupancy) as well as cognitive (e.g. memory, attention) parameters have to be conducted and will shed light on the potential negative consequences microdosing could have.
Collapse
Affiliation(s)
- Kim PC Kuypers
- Department of Neuropsychology and
Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University,
Maastricht, The Netherlands
| | - Livia Ng
- Department of Psychology, University
College London, London, UK
| | - David Erritzoe
- Department of Psychology,
Neuropsychopharmacology Unit, Imperial College London, London, UK
| | - Gitte M Knudsen
- Neurobiology Research Unit,
Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Charles D Nichols
- Department of Pharmacology and
Experimental Therapeutics, Louisiana State University Health Sciences Center, New
Orleans, LA, USA
| | - David E Nichols
- Purdue University College of Pharmacy,
West Lafayette, LA, USA
| | - Luca Pani
- Department of Psychiatry and Behavioral
Sciences, Psychiatry University of Miami, Miami, FL, USA
- Department of Biomedical, Metabolic
& Neural Sciences, University of Modena, Modena, Italy
| | | | - David Nutt
- Neuropsychopharmacology, Imperial
College London, London, UK
| |
Collapse
|