1
|
Shanbhag S, Al-Sharabi N, Fritz-Wallace K, Kristoffersen EK, Bunæs DF, Romandini M, Mustafa K, Sanz M, Gruber R. Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes. J Funct Biomater 2024; 15:302. [PMID: 39452600 PMCID: PMC11508515 DOI: 10.3390/jfb15100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen barrier membranes are frequently used in guided tissue and bone regeneration. The aim of this study was to analyze the signature of human serum proteins adsorbed onto collagen membranes using a novel protein extraction method combined with mass spectrometry. Native porcine-derived collagen membranes (Geistlich Bio-Gide®, Wolhusen, Switzerland) were exposed to pooled human serum in vitro and, after thorough washing, subjected to protein extraction either in conjunction with protein enrichment or via a conventional surfactant-based method. The extracted proteins were analyzed via liquid chromatography with tandem mass spectrometry. Bioinformatic analysis of global profiling, gene ontology, and functional enrichment of the identified proteins was performed. Overall, a total of 326 adsorbed serum proteins were identified. The enrichment and conventional methods yielded similar numbers of total (315 vs. 309), exclusive (17 vs. 11), and major bone-related proteins (18 vs. 14). Most of the adsorbed proteins (n = 298) were common to both extraction groups and included several growth factors, extracellular matrix (ECM) proteins, cell adhesion molecules, and angiogenesis mediators involved in bone regeneration. Functional analyses revealed significant enrichment of ECM, exosomes, immune response, and cell growth components. Key proteins [transforming growth factor-beta 1 (TGFβ1), insulin-like growth factor binding proteins (IGFBP-5, -6, -7)] were exclusively detected with the enrichment-based method. In summary, native collagen membranes exhibited a high protein adsorption capacity in vitro. While both extraction methods were effective, the enrichment-based method showed distinct advantages in detecting specific bone-related proteins. Therefore, the use of multiple extraction methods is advisable in studies investigating protein adsorption on biomaterials.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Niyaz Al-Sharabi
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Katarina Fritz-Wallace
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway
| | - Dagmar Fosså Bunæs
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mariano Sanz
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
- ETEP Research Group, University Complutense of Madrid, 28040 Madrid, Spain
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Nakonieczny DS, Antonowicz M, SimhaMartynkova G, Kern F, Pazourková L, Erfurt K, Hüpsch M. PA-12-Zirconia-Alumina-Cenospheres 3D Printed Composites: Accelerated Ageing and Role of the Sterilisation Process for Physicochemical Properties. Polymers (Basel) 2022; 14:polym14153152. [PMID: 35956670 PMCID: PMC9370858 DOI: 10.3390/polym14153152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to conduct artificial ageing tests on polymer-ceramic composites prepared from polyamide PA-12 polymer matrix for medical applications and three different variants of ceramic fillers: zirconia, alumina and cenospheres. Before ageing, the samples were subjected to ethyl oxide sterilization. The composite variants were prepared for 3D printing using the fused deposition modeling method. The control group consisted of unsterilized samples. Samples were subjected to artificial ageing in a high-pressure autoclave. Ageing conditions were calculated from the modified Hammerlich Arrhenius kinetic equation. Ageing was carried out in artificial saliva. After ageing the composites were subjected to mechanical (tensile strength, hardness, surface roughness) testing, chemical and structural (MS, FTIR) analysis, electron microscopy observations (SEM/EDS) and absorbability measurements.
Collapse
Affiliation(s)
- Damian S. Nakonieczny
- Institute for Manufacturing Technologies of Ceramic Components and Composites, University of Stuttgart, 70569 Stuttgart, Germany;
- Nanotechnology Centre, CEET, VŠB—Technical University of Ostrava, 17. Listopadu 15, 708733 Ostrava-Poruba, Czech Republic;
- Department of Biomedical Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; (M.A.); (M.H.)
- Correspondence: ; Tel.: +48-791-515-766
| | - Magdalena Antonowicz
- Department of Biomedical Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; (M.A.); (M.H.)
| | - Gražyna SimhaMartynkova
- Nanotechnology Centre, CEET, VŠB—Technical University of Ostrava, 17. Listopadu 15, 708733 Ostrava-Poruba, Czech Republic;
| | - Frank Kern
- Institute for Manufacturing Technologies of Ceramic Components and Composites, University of Stuttgart, 70569 Stuttgart, Germany;
| | - Lenka Pazourková
- IT4 Innovations, VŠB—Technical University of Ostrava, 17. Listopadu 15, 708733 Ostrava-Poruba, Czech Republic;
| | - Karol Erfurt
- Faculty of Chemistry, Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Michał Hüpsch
- Department of Biomedical Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; (M.A.); (M.H.)
| |
Collapse
|
3
|
Parisi L, Rivara F, Costa CA, Abuna RP, Palioto DB, Macaluso GM. Aptamers recognizing fibronectin confer improved bioactivity to biomaterials and promote new bone formation in a periodontal defect in rats. Biomed Mater 2020; 16:015016. [PMID: 33325378 DOI: 10.1088/1748-605x/abb6b2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of alloplastic materials in periodontal regenerative therapies is limited by their incapacity to establish a dynamic dialog with the surrounding milieu. The aim of the present study was to control biomaterial surface bioactivity by introducing aptamers to induce the selective adsorption of fibronectin from blood, thus promoting platelets activation in vitro and bone regeneration in vivo. A hyaluronic acid/polyethyleneglycole-based hydrogel was enriched with aptamers selected for recognizing and binding fibronectin. In vitro, the capacity of constructs to support osteoblast adhesion, as well as platelets aggregation and activation was assessed by chemiluminescence within 24 h. Matrices were then evaluated in a rat periodontal defect to assess their regenerative potential by microcomputed tomography (µCT) and their osteogenic capacity by Luminex assay 5, 15 and 30 d postoperatively. Aptamers were found to confer matrices the capacity of sustaining firm cell adhesion (p = 0.0377) and to promote platelets activation (p = 0.0442). In vivo, aptamers promoted new bone formation 30 d post-operatively (p < 0.001) by enhancing osteoblastic lineage commitment maturation. Aptamers are a viable surface modification, which confers alloplastic materials the potential capacity to orchestrate blood clot formation, thus controlling bone healing.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland
| | - Federico Rivara
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
| | - Camila A Costa
- Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
- Department of Stomatological Sciences, School of Dentistry, Federal University of Goias, Avenida Arumã, Goiâna, GO 74835-320, Brazil
| | - Rodriguo Pf Abuna
- Cell Culture Laboratory, School of Dentistry of Ribeirao Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
- Fiocruz-Bi-Instituional Translational Medicine Project, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Rua dos Técnicos, Ribeirão Preto, SP 14040-030, Brazil
| | - Daniela B Palioto
- Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, Parma 43124, Italy
| |
Collapse
|