1
|
Wang L, Chen A, Zhang L, Zhang J, Wei S, Chen Y, Hu M, Mo Y, Li S, Zeng M, Li H, Liang C, Ren Y, Xu L, Liang W, Zhu X, Wang X, Sun D. Deciphering the molecular nexus between Omicron infection and acute kidney injury: a bioinformatics approach. Front Mol Biosci 2024; 11:1340611. [PMID: 39027131 PMCID: PMC11254815 DOI: 10.3389/fmolb.2024.1340611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Background The ongoing global health crisis of COVID-19, and particularly the challenges posed by recurrent infections of the Omicron variant, have significantly strained healthcare systems worldwide. There is a growing body of evidence indicating an increased susceptibility to Omicron infection in patients suffering from Acute Kidney Injury (AKI). However, the intricate molecular interplay between AKI and Omicron variant of COVID-19 remains largely enigmatic. Methods This study employed a comprehensive analysis of human RNA sequencing (RNA-seq) and microarray datasets to identify differentially expressed genes (DEGs) associated with Omicron infection in the context of AKI. We engaged in functional enrichment assessments, an examination of Protein-Protein Interaction (PPI) networks, and advanced network analysis to elucidate the cellular signaling pathways involved, identify critical hub genes, and determine the relevant controlling transcription factors and microRNAs. Additionally, we explored protein-drug interactions to highlight potential pharmacological interventions. Results Our investigation revealed significant DEGs and cellular signaling pathways implicated in both Omicron infection and AKI. We identified pivotal hub genes, including EIF2AK2, PLSCR1, GBP1, TNFSF10, C1QB, and BST2, and their associated regulatory transcription factors and microRNAs. Notably, in the murine AKI model, there was a marked reduction in EIF2AK2 expression, in contrast to significant elevations in PLSCR1, C1QB, and BST2. EIF2AK2 exhibited an inverse relationship with the primary AKI mediator, Kim-1, whereas PLSCR1 and C1QB demonstrated strong positive correlations with it. Moreover, we identified potential therapeutic agents such as Suloctidil, Apocarotenal, 3'-Azido-3'-deoxythymidine, among others. Our findings also highlighted a correlation between the identified hub genes and diseases like myocardial ischemia, schizophrenia, and liver cirrhosis. To further validate the credibility of our data, we employed an independent validation dataset to verify the hub genes. Notably, the expression patterns of PLSCR1, GBP1, BST2, and C1QB were consistent with our research findings, reaffirming the reliability of our results. Conclusion Our bioinformatics analysis has provided initial insights into the shared genetic landscape between Omicron COVID-19 infections and AKI, identifying potential therapeutic targets and drugs. This preliminary investigation lays the foundation for further research, with the hope of contributing to the development of innovative treatment strategies for these complex medical conditions.
Collapse
Affiliation(s)
- Li Wang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lantian Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Junwei Zhang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Shuqi Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yangxiao Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Mingliang Hu
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Yihao Mo
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Sha Li
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Min Zeng
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Huafeng Li
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Caixing Liang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Yi Ren
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Liting Xu
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Wenhua Liang
- Nephrology Department, Southern Medical University Affiliated Longhua People’s Hospital, Shenzhen, China
| | - Xuejiao Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaokai Wang
- Xuzhou First People’s Hospital, Xuzhou, Jiangsu, China
| | - Donglin Sun
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
2
|
Chen WC, Lin YP, Cheng CM, Shen CF, Ching A, Chang TC, Shen CJ. Antibodies against SARS-CoV-2 Alpha, Beta, and Gamma Variants in Pregnant Women and Their Neonates under Antenatal Vaccination with Moderna (mRNA-1273) Vaccine. Vaccines (Basel) 2022; 10:vaccines10091415. [PMID: 36146492 PMCID: PMC9505142 DOI: 10.3390/vaccines10091415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was to examine the impact of COVID-19 vaccination on the anti-SARS-CoV-2 spike receptor binding domain IgG antibody (SRBD IgG) binding ratio (SBR) from Alpha, Beta, and Gamma variants of SARS-CoV-2 in pregnant women and neonates. The impact of antenatal influenza (flu) and pertussis (Tdap) vaccines was also studied. We enrolled pregnant women vaccinated with the Moderna (mRNA-1273) vaccine during pregnancy and collected maternal plasma (MP) and neonatal cord blood (CB) during delivery to determine the SBR via enzyme-linked immunosorbent assays (ELISA). A total of 78 samples were collected from 39 pregnant women. The SBR was higher for Alpha variants compared to Beta/Gamma variants (MP: 63.95% vs. 47.91% vs. 43.48%, p = 0.0001; CB: 72.14% vs. 56.78% vs. 53.66%, p = 0.006). Pregnant women receiving two doses of the COVID-19 vaccine demonstrated a better SBR against SARS-CoV-2 Alpha, Beta, and Gamma variants than women receiving just a single dose. Women who received the Tdap/flu vaccines demonstrated a better SBR when two COVID-19 vaccine doses were < 6 weeks apart. A better SBR was detected among women who had more recently received their second COVID-19 vaccine dose. Two doses of the COVID-19 vaccine provided recipients with a better SBR for Alpha/Beta/Gamma variants. Although Tdap/flu vaccines may affect the efficacy of the COVID-19 vaccine, different vaccination timings can improve the SBR.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City 236, Taiwan
| | - Yen-Pin Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Alex Ching
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15123, USA
| | - Ting-Chang Chang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Monereo-Sánchez J, Luykx JJ, Pinzón-Espinosa J, Richard G, Motazedi E, Westlye LT, Andreassen OA, van der Meer D. Diphtheria And Tetanus Vaccination History Is Associated With Lower Odds of COVID-19 Hospitalization. Front Immunol 2021; 12:749264. [PMID: 34691063 PMCID: PMC8529993 DOI: 10.3389/fimmu.2021.749264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/08/2021] [Indexed: 01/20/2023] Open
Abstract
Background COVID-19 is characterized by strikingly large, mostly unexplained, interindividual variation in symptom severity: while some individuals remain nearly asymptomatic, others suffer from severe respiratory failure. Previous vaccinations for other pathogens, in particular tetanus, may partly explain this variation, possibly by readying the immune system. Methods We made use of data on COVID-19 testing from 103,049 participants of the UK Biobank (mean age 71.5 years, 54.2% female), coupled to immunization records of the last ten years. Using logistic regression, covarying for age, sex, respiratory disease diagnosis, and socioeconomic status, we tested whether individuals vaccinated for tetanus, diphtheria or pertussis, differed from individuals that had only received other vaccinations on 1) undergoing a COVID-19 test, 2) being diagnosed with COVID-19, and 3) whether they developed severe COVID-19 symptoms. Results We found that individuals with registered diphtheria or tetanus vaccinations are less likely to develop severe COVID-19 than people who had only received other vaccinations (diphtheria odds ratio (OR)=0.47, p-value=5.3*10-5; tetanus OR=0.52, p-value=1.2*10-4). Discussion These results indicate that a history of diphtheria or tetanus vaccinations is associated with less severe manifestations of COVID-19. These vaccinations may protect against severe COVID-19 symptoms by stimulating the immune system. We note the correlational nature of these results, yet the possibility that these vaccinations may influence the severity of COVID-19 warrants follow-up investigations.
Collapse
Affiliation(s)
- Jennifer Monereo-Sánchez
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jurjen J Luykx
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, Netherlands
| | - Justo Pinzón-Espinosa
- Department of Mental Health, Parc Tauli University Hospital, Sabadell, Barcelona, Spain.,Department of Clinical Psychiatry, School of Medicine, University of Panama, Panama, Panama.,Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ehsan Motazedi
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Zhang X, Pyne S, Kedem B. Multivariate Tail Probabilities: Predicting Regional Pertussis Cases in Washington State. ENTROPY 2021; 23:e23060675. [PMID: 34072055 PMCID: PMC8226468 DOI: 10.3390/e23060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 11/22/2022]
Abstract
In disease modeling, a key statistical problem is the estimation of lower and upper tail probabilities of health events from given data sets of small size and limited range. Assuming such constraints, we describe a computational framework for the systematic fusion of observations from multiple sources to compute tail probabilities that could not be obtained otherwise due to a lack of lower or upper tail data. The estimation of multivariate lower and upper tail probabilities from a given small reference data set that lacks complete information about such tail data is addressed in terms of pertussis case count data. Fusion of data from multiple sources in conjunction with the density ratio model is used to give probability estimates that are non-obtainable from the empirical distribution. Based on a density ratio model with variable tilts, we first present a univariate fit and, subsequently, improve it with a multivariate extension. In the multivariate analysis, we selected the best model in terms of the Akaike Information Criterion (AIC). Regional prediction, in Washington state, of the number of pertussis cases is approached by providing joint probabilities using fused data from several relatively small samples following the selected density ratio model. The model is validated by a graphical goodness-of-fit plot comparing the estimated reference distribution obtained from the fused data with that of the empirical distribution obtained from the reference sample only.
Collapse
Affiliation(s)
- Xuze Zhang
- Department of Mathematics and Institute for Systems Research, University of Maryland, College Park, MD 20742, USA;
| | - Saumyadipta Pyne
- Public Health Dynamics Laboratory, Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Health Analytics Network, Pittsburgh, PA 15237, USA
- Correspondence: (S.P.); (B.K.)
| | - Benjamin Kedem
- Department of Mathematics and Institute for Systems Research, University of Maryland, College Park, MD 20742, USA;
- Correspondence: (S.P.); (B.K.)
| |
Collapse
|
5
|
Root-Bernstein R. Pneumococcal and Influenza Vaccination Rates and Pneumococcal Invasive Disease Rates Set Geographical and Ethnic Population Susceptibility to Serious COVID-19 Cases and Deaths. Vaccines (Basel) 2021; 9:474. [PMID: 34066697 PMCID: PMC8151685 DOI: 10.3390/vaccines9050474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
This study examines the relationship of pneumococcal vaccination rates, influenza, measles-mumps-rubella (MMR) diphtheria-tetanus-pertussis vaccinations (DTP), polio, Haemophilus influenzae type B (Hib), and Bacillus Calmette-Guerin (tuberculosis) vaccination rates to COVID-19 case and death rates for 51 nations that have high rates of COVID-19 testing and for which nearly complete childhood, at-risk adult and elderly pneumococcal vaccination data were available. The study is unique in a large number of nations examined, the range of vaccine controls, in testing effects of combinations of vaccinations, and in examining the relationship of COVID-19 and vaccination rates to invasive pneumococcal disease (IPD). Analysis of Italian regions and the states of the United States were also performed. Significant positive correlations were found between IPD (but not lower respiratory infections) and COVID-19 rates, while significant negative correlations were found between pneumococcal vaccination and COVID-19 rates. Influenza and MMR vaccination rates were negatively correlated with lower respiratory infection (LRI) rates and may synergize with pneumococcal vaccination rates to protect against COVID-19. Pneumococcal and influenza vaccination rates were independent of other vaccination rates. These results suggest that endemic rates of bacterial pneumonias, for which pneumococci are a sentinel, may set regional and national susceptibility to severe COVID-19 disease and death.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, 567 Wilson Road, Room 1104 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Yessirkepov M, Nurmashev B, Gasparyan AY. HYPOTHESES AND ETHICS IN THE TIME OF THE COVID-19 PANDEMIC. CENTRAL ASIAN JOURNAL OF MEDICAL HYPOTHESES AND ETHICS 2021. [DOI: 10.47316/cajmhe.2021.2.1.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HYPOTHESES AND ETHICS IN THE TIME OF THE COVID-19 PANDEMIC
Collapse
|
7
|
Stefanati A, d’Anchera E, De Motoli F, Savio M, Toffoletto MV, Gabutti G. Value of Immunizations during the COVID-19 Emergency. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E778. [PMID: 33477591 PMCID: PMC7831295 DOI: 10.3390/ijerph18020778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/05/2022]
Abstract
Recent estimates by World Health Organization (WHO, Geneva, Switzerland) and United Nations International Children's Emergency Fund (UNICEF) show a significant decline in vaccinal coverage rates in both pediatric and adult populations. The interruption of vaccination services is reported in at least 68 countries, with the involvement of about 80 million children worldwide. The situation is alarming if we consider that already in the period preceding the pandemic, immunization programs slowed down in various areas of the world. For these reasons, there is the risk of overloading health systems, already under pressure from the pandemic emergency, by employing human and economic resources for the management of epidemic outbreaks from vaccine-preventable diseases. The restoration and integration of vaccination services, the immunization of susceptible individuals as well as the adoption of adequate monitoring and surveillance measures are the main activities adopted by different countries to address the current global health emergency.
Collapse
Affiliation(s)
- Armando Stefanati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Erica d’Anchera
- Department of Medical Sciences, Postgraduate School of Hygiene and Preventive Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.d.); (F.D.M.); (M.S.); (M.V.T.)
| | - Francesco De Motoli
- Department of Medical Sciences, Postgraduate School of Hygiene and Preventive Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.d.); (F.D.M.); (M.S.); (M.V.T.)
| | - Marta Savio
- Department of Medical Sciences, Postgraduate School of Hygiene and Preventive Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.d.); (F.D.M.); (M.S.); (M.V.T.)
| | - Maria Vittoria Toffoletto
- Department of Medical Sciences, Postgraduate School of Hygiene and Preventive Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.d.); (F.D.M.); (M.S.); (M.V.T.)
| | - Giovanni Gabutti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|