1
|
Chan ED, King PT, Bai X, Schoffstall AM, Sandhaus RA, Buckle AM. The Inhibition of Serine Proteases by Serpins Is Augmented by Negatively Charged Heparin: A Concise Review of Some Clinically Relevant Interactions. Int J Mol Sci 2024; 25:1804. [PMID: 38339082 PMCID: PMC10855260 DOI: 10.3390/ijms25031804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Serine proteases are members of a large family of hydrolytic enzymes in which a particular serine residue in the active site performs an essential role as a nucleophile, which is required for their proteolytic cleavage function. The array of functions performed by serine proteases is vast and includes, among others, the following: (i) the ability to fight infections; (ii) the activation of blood coagulation or blood clot lysis systems; (iii) the activation of digestive enzymes; and (iv) reproduction. Serine protease activity is highly regulated by multiple families of protease inhibitors, known collectively as the SERine Protease INhibitor (SERPIN). The serpins use a conformational change mechanism to inhibit proteases in an irreversible way. The unusual conformational change required for serpin function provides an elegant opportunity for allosteric regulation by the binding of cofactors, of which the most well-studied is heparin. The goal of this review is to discuss some of the clinically relevant serine protease-serpin interactions that may be enhanced by heparin or other negatively charged polysaccharides. The paired serine protease-serpin in the framework of heparin that we review includes the following: thrombin-antithrombin III, plasmin-anti-plasmin, C1 esterase/kallikrein-C1 esterase inhibitor, and furin/TMPRSS2 (serine protease Transmembrane Protease 2)-alpha-1-antitrypsin, with the latter in the context of COVID-19 and prostate cancer.
Collapse
Affiliation(s)
- Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Paul T. King
- Medicine Monash Health, Monash University, Clayton, VIC 3800, Australia
| | - Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Allen M. Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA
| | | | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Replay, San Diego, CA 92121, USA
| |
Collapse
|
2
|
Mehta P, Chattopadhyay P, Mohite R, D'Rozario R, Bandopadhyay P, Sarif J, Ray Y, Ganguly D, Pandey R. Suppressed transcript diversity and immune response in COVID-19 ICU patients: a longitudinal study. Life Sci Alliance 2024; 7:e202302305. [PMID: 37918965 PMCID: PMC10622646 DOI: 10.26508/lsa.202302305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Understanding the dynamic changes in gene expression during Acute Respiratory Distress Syndrome (ARDS) progression in post-acute infection patients is crucial for unraveling the underlying mechanisms. Study investigates the longitudinal changes in gene/transcript expression patterns in hospital-admitted severe COVID-19 patients with ARDS post-acute SARS-CoV-2 infection. Blood samples were collected at three time points and patients were stratified into severe and mild ARDS, based on their oxygenation saturation (SpO2/FiO2) kinetics over 7 d. Decline in transcript diversity was observed over time, particularly in patients with higher severity, indicating dysregulated transcriptional landscape. Comparing gene/transcript-level analyses highlighted a rather limited overlap. With disease progression, a transition towards an inflammatory state was evident. Strong association was found between antibody response and disease severity, characterized by decreased antibody response and activated B cell population in severe cases. Bayesian network analysis identified various factors associated with disease progression and severity, viz. humoral response, TLR signaling, inflammatory response, interferon response, and effector T cell abundance. The findings highlight dynamic gene/transcript expression changes during ARDS progression, impact on tissue oxygenation and elucidate disease pathogenesis.
Collapse
Affiliation(s)
- Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramakant Mohite
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Ranit D'Rozario
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Purbita Bandopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jafar Sarif
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Yogiraj Ray
- Infectious Disease and Beleghata General Hospital, Kolkata, India
- Department of Infectious Diseases, Shambhunath Pandit Hospital, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Dipyaman Ganguly
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Bai X, Schountz T, Buckle AM, Talbert JL, Sandhaus RA, Chan ED. Alpha-1-antitrypsin antagonizes COVID-19: a review of the epidemiology, molecular mechanisms, and clinical evidence. Biochem Soc Trans 2023; 51:1361-1375. [PMID: 37294003 PMCID: PMC10317171 DOI: 10.1042/bst20230078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Alpha-1-antitrypsin (AAT), a serine protease inhibitor (serpin), is increasingly recognized to inhibit SARS-CoV-2 infection and counter many of the pathogenic mechanisms of COVID-19. Herein, we reviewed the epidemiologic evidence, the molecular mechanisms, and the clinical evidence that support this paradigm. As background to our discussion, we first examined the basic mechanism of SARS-CoV-2 infection and contend that despite the availability of vaccines and anti-viral agents, COVID-19 remains problematic due to viral evolution. We next underscored that measures to prevent severe COVID-19 currently exists but teeters on a balance and that current treatment for severe COVID-19 remains grossly suboptimal. We then reviewed the epidemiologic and clinical evidence that AAT deficiency increases risk of COVID-19 infection and of more severe disease, and the experimental evidence that AAT inhibits cell surface transmembrane protease 2 (TMPRSS2) - a host serine protease required for SARS-CoV-2 entry into cells - and that this inhibition may be augmented by heparin. We also elaborated on the panoply of other activities of AAT (and heparin) that could mitigate severity of COVID-19. Finally, we evaluated the available clinical evidence for AAT treatment of COVID-19.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- PTNG Bio, Melbourne, Australia
| | - Janet L. Talbert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, U.S.A
| | | | - Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| |
Collapse
|
4
|
Rodríguez-García C, Rodríguez-Ruiz E, Ruano-Raviña A, Cruz R, Piñeiro-Lamas M, Casal A, Lapunzina P, Carracedo Á, Valdés L, Valdés L. Is SARS-COV-2 associated with alpha-1 antitrypsin deficiency? J Thorac Dis 2023; 15:711-717. [PMID: 36910046 PMCID: PMC9992632 DOI: 10.21037/jtd-22-1062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023]
Affiliation(s)
| | - Emilio Rodríguez-Ruiz
- Clinical University Hospital of Santiago, Santiago de Compostela, Spain.,Simulation, Life Support and Intensive Care Research Unit of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Ruano-Raviña
- Preventive Medicine and Public Health Unit, University of Santiago de Compostela, Santiago de Compostela, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiology and Public Health - CIBERESP), Madrid, Spain.,Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Raquel Cruz
- Health Research Institute (IDIS), Santiago de Compostela, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Madrid, Spain.,Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Piñeiro-Lamas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiology and Public Health - CIBERESP), Madrid, Spain.,Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Ana Casal
- Pulmonology Department, Clinical University Hospital of Santiago, Santiago de Compostela, Spain
| | - Pablo Lapunzina
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Madrid, Spain.,Institute of Medical and Molecular Genetics (INGEMM), University Hospital La Paz - IDIPAZ, Madrid, Spain
| | - Ángel Carracedo
- Health Research Institute (IDIS), Santiago de Compostela, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute, Madrid, Spain.,Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Galician Public Foundation for Genomic Medicine, Galician Health Service (SERGAS), Santiago de Compostela, Spain
| | - Luis Valdés
- Pulmonology Department, Clinical University Hospital of Santiago, Santiago de Compostela, Spain.,Health Research Institute (IDIS), Santiago de Compostela, Spain.,Medicine Department, University of Santiago, Santiago de Compostela, Spain
| | | |
Collapse
|
5
|
Osborne AJ, Hussain SS, Helman EE, Foote JB, Kiupel M, Rowe SM, Collins DE. Ferret Systemic Coronavirus in Alpha-1 Antitrypsin Knockout Ferrets. Comp Med 2022; 72:410-415. [PMID: 36104147 PMCID: PMC9827607 DOI: 10.30802/aalas-cm-22-000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
Ferret systemic coronavirus (FRSCV) causes a highly fatal disease of ferrets (Mustela putorius furo). It is believed to be a mutated variant of ferret enteric coronavirus (FRECV) and has a clinical presentation similar to that of feline infectious peritonitis virus (FIPV) in cats. The interplay of infectious diseases and host genetics will become a greater issue in the research environment as genetically modified species other than rodents become available due to advances in gene editing technology. In this case series, we present the clinical and histopathologic features of a FRSCV outbreak that affected 5 out of 10 ferrets with α-1 antitrypsin knockout (AAT KO) over an approximately 1-y period. Clinical features varied, with the affected ferrets presenting with some combination of wasting, hind limb paralysis, incontinence or sudden death. Multiple ferrets had gross pathologic lesions consistent with FRSCV, but the lesions were typically mild. Microscopic pyogranulomatous inflammation was present in 4 ferrets. Immunohistochemistry using an anti-feline coronavirus antibody that cross reacts with ferret coronavirus confirmed infection of intralesional macrophages in 4 out of 5 animals with suspected FRSCV infection. PCR testing of formalin fixed tissue was negative for all ferrets. PCR testing of feces from healthy wild-type ferrets indicated that the endemic presence of FRECV genotype 2, while PCR surveillance testing of other in-house AAT KO ferrets revealed both enteric coronavirus genotypes 1 and 2. This case series highlights the potential for greater disease incidence in the future as genetically modified ferrets are used more often, and may support exclusion of FRECV and similar viruses from highly susceptible ferret genotypes.
Collapse
Affiliation(s)
- Andrea J Osborne
- Animal Resources Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shah S Hussain
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Emily E Helman
- Animal Resources Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremy B Foote
- Animal Resources Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Matti Kiupel
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, Michigan
| | - Steven M Rowe
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dalis E Collins
- Animal Resources Program, University of Alabama at Birmingham, Birmingham, Alabama;,
| |
Collapse
|
6
|
Seibert D, Wysocki K. The genomics of COVID. J Am Assoc Nurse Pract 2022; 34:872-875. [PMID: 35796108 DOI: 10.1097/jxx.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Coronaviruses, named for their crown-like appearance, are relative newcomers to the human viral encyclopedia, but they are anything but new to the viral landscape. Initially thought to cause relatively mild disease in humans, it is now clear that coronaviruses can cause significant morbidity and mortality. COVID-19 provided a ringside seat from which to watch scientists use genomics in hundreds of ways to learn about, protect against, and ultimately control the effects of this novel virus. This article provides an overview of how genomics was used from the very first reported case in Wuhan, China to the development of at-home test kits, vaccines, and understanding the genetic association with increased risk for severe illness.
Collapse
Affiliation(s)
- Diane Seibert
- Daniel K Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | |
Collapse
|
7
|
Zheng J, Zhang Y, Zhao H, Liu Y, Baird D, Karim MA, Ghoussaini M, Schwartzentruber J, Dunham I, Elsworth B, Roberts K, Compton H, Miller-Molloy F, Liu X, Wang L, Zhang H, Smith GD, Gaunt TR. Multi-ancestry Mendelian randomization of omics traits revealing drug targets of COVID-19 severity. EBioMedicine 2022; 81:104112. [PMID: 35772218 PMCID: PMC9235320 DOI: 10.1016/j.ebiom.2022.104112] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Recent omic studies prioritised several drug targets associated with coronavirus disease 2019 (COVID-19) severity. However, little evidence was provided to systematically estimate the effect of drug targets on COVID-19 severity in multiple ancestries. METHODS In this study, we applied Mendelian randomization (MR) and colocalization approaches to understand the putative causal effects of 16,059 transcripts and 1608 proteins on COVID-19 severity in European and effects of 610 proteins on COVID-19 severity in African ancestry. We further integrated genetics, clinical and literature evidence to prioritise drug targets. Additional sensitivity analyses including multi-trait colocalization and phenome-wide MR were conducted to test for MR assumptions. FINDINGS MR and colocalization prioritized four protein targets, FCRL3, ICAM5, ENTPD5 and OAS1 that showed effect on COVID-19 severity in European ancestry. One protein target, SERPINA1 showed a stronger effect in African ancestry but much weaker effect in European ancestry (odds ratio [OR] in Africans=0.369, 95%CI=0.203 to 0.668, P = 9.96 × 10-4; OR in Europeans=1.021, 95%CI=0.901 to 1.157, P = 0.745), which suggested that increased level of SERPINA1 will reduce COVID-19 risk in African ancestry. One protein, ICAM1 showed suggestive effect on COVID-19 severity in both ancestries (OR in Europeans=1.152, 95%CI=1.063 to 1.249, P = 5.94 × 10-4; OR in Africans=1.481, 95%CI=1.008 to 2.176; P = 0.045). The OAS1, SERPINA1 and ICAM1 effects were replicated using updated COVID-19 severity data in the two ancestries respectively, where alternative splicing events in OAS1 and ICAM1 also showed marginal effects on COVID-19 severity in Europeans. The phenome-wide MR of the prioritised targets on 622 complex traits provided information on potential beneficial effects on other diseases and suggested little evidence of adverse effects on major complications. INTERPRETATION Our study identified six proteins as showing putative causal effects on COVID-19 severity. OAS1 and SERPINA1 were targets of existing drugs in trials as potential COVID-19 treatments. ICAM1, ICAM5 and FCRL3 are related to the immune system. Across the six targets, OAS1 has no reliable instrument in African ancestry; SERPINA1, FCRL3, ICAM5 and ENTPD5 showed a different level of putative causal evidence in European and African ancestries, which highlights the importance of more powerful ancestry-specific GWAS and value of multi-ancestry MR in informing the effects of drug targets on COVID-19 across different populations. This study provides a first step towards clinical investigation of beneficial and adverse effects of COVID-19 drug targets. FUNDING No.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom.
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Huiling Zhao
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
| | - Yi Liu
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
| | - Denis Baird
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
| | - Mohd Anisul Karim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Maya Ghoussaini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Jeremy Schwartzentruber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Ian Dunham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Benjamin Elsworth
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
| | - Katherine Roberts
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, United Kingdom
| | - Hannah Compton
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, United Kingdom
| | - Felix Miller-Molloy
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, United Kingdom
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Centre, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom; NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, United Kingdom
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom; NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, United Kingdom.
| |
Collapse
|
8
|
Rani P, Kapoor B, Gulati M, Atanasov AG, Alzahrani Q, Gupta R. Antimicrobial peptides: A plausible approach for COVID-19 treatment. Expert Opin Drug Discov 2022; 17:473-487. [PMID: 35255763 PMCID: PMC8935455 DOI: 10.1080/17460441.2022.2050693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), which emerged as a major public health threat, has affected >400 million people globally leading to >5 million mortalities to date. Treatments of COVID-19 are still to be developed as the available therapeutic approaches are not able to combat the virus causing the disease (severe acute respiratory syndrome coronavirus-2; SARS-CoV-2) satisfactorily. However, antiviral peptides (AVPs) have demonstrated prophylactic and therapeutic effects against many coronaviruses (CoVs). AREAS COVERED This review critically discusses various types of AVPs evaluated for the treatment of COVID-19 along with their mechanisms of action. Furthermore, the peptides inhibiting the entry of the virus by targeting its binding to angiotensin-converting enzyme 2 (ACE2) or integrins, fusion mechanism as well as activation of proteolytic enzymes (cathepsin L, transmembrane serine protease 2 (TMPRSS2), or furin) are also discussed. EXPERT OPINION Although extensively investigated, successful treatment of COVID-19 is still a challenge due to emergence of virus mutants. Antiviral peptides are anticipated to be blockbuster drugs for the management of this serious infection because of their formulation and therapeutic advantages. Although they may act on different pathways, AVPs having a multi-targeted approach are considered to have the upper hand in the management of this infection.
Collapse
Affiliation(s)
- Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville, Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
9
|
Pathak E, Atri N, Mishra R. Single-Cell Transcriptome Analysis Reveals the Role of Pancreatic Secretome in COVID-19 Associated Multi-organ Dysfunctions. Interdiscip Sci 2022; 14:863-878. [PMID: 35394619 PMCID: PMC8990272 DOI: 10.1007/s12539-022-00513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
The SARS-CoV-2 infection affects the lungs, heart, kidney, intestine, olfactory epithelia, liver, and pancreas and brings forward multi-organ dysfunctions (MODs). However, mechanistic details of SARS-CoV-2-induced MODs are unclear. Here, we have investigated the role of pancreatic secretory proteins to mechanistically link COVID-19 with MODs using single-cell transcriptome analysis. Secretory proteins were identified using the Human Protein Atlas. Gene ontology, pathway, and disease enrichment analyses were used to highlight the role of upregulated pancreatic secretory proteins (secretome). We show that SARS-CoV-2 infection shifts the expression profile of pancreatic endocrine cells to acinar and ductal cell-specific profiles, resulting in increased expression of acinar and ductal cell-specific genes. Among all the secretory proteins, the upregulated expression of IL1B, AGT, ALB, SPP1, CRP, SERPINA1, C3, TFRC, TNFSF10, and MIF was mainly associated with disease of diverse organs. Extensive literature and experimental evidence are used to validate the association of the upregulated pancreatic secretome with the coagulation cascade, complement activation, renin-angiotensinogen system dysregulation, endothelial cell injury and thrombosis, immune system dysregulation, and fibrosis. Our finding suggests the influence of an upregulated secretome on multi-organ systems such as nervous, cardiovascular, immune, digestive, and urogenital systems. Our study provides evidence that an upregulated pancreatic secretome is a possible cause of SARS-CoV-2-induced MODs. This finding may have a significant impact on the clinical setting regarding the prevention of SARS-CoV-2-induced MODs.
Collapse
Affiliation(s)
- Ekta Pathak
- Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Neelam Atri
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajeev Mishra
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Colello J, Ptasinski A, Zhan X, Kaur S, Craig T. Assessment of Patient Perspectives and Barriers to Self-Infusion of Augmentation Therapy for Alpha-1 Antitrypsin Deficiency During the COVID-19 Pandemic. Pulm Ther 2022; 8:95-103. [PMID: 35067906 PMCID: PMC8784277 DOI: 10.1007/s41030-022-00182-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/06/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Alpha-1 antitrypsin (AAT) deficiency is an autosomal co-dominant genetic condition that predisposes individuals to pulmonary and hepatic disease, and in severe cases is treated with augmentation by intravenous infusion. Our aim was to assess patient reluctance to transition to self-administered augmentation of alpha-1-antitrypsin, during the pandemic of SARS-CoV-2. Methods A phone questionnaire was administered to 22 patients with severe alpha-1-antitrypsin deficiency who were currently receiving AAT augmentation therapy. Inclusion criteria included patients \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 18 years old, diagnosed with AATD, and receiving intravenous AAT protein augmentation therapy. Information was gathered regarding demographics, perspectives on transitioning to self-administered treatment, and anxiety and depression prevalence. Results were collected anonymously using REDCap. Joint and marginal statistical analysis was done to quantify links between participants’ willingness to transition to self-infusion and correlations with sex, age, years of therapy, anxiety, and depression. Results Of 22 patients, 14 were male and eight were female. Ages ranged from 36 to 79 years, with an average of 62.5. Genotypes were ZZ (14), MZ (3), and SZ (2) among others. Average length of intravenous augmentation was 9.5 years. The majority, 16 participants, were aware self-infusion was an option. Eight participants were willing to consider transitioning to self-infusion if trained and educated. Eight patients reported that fear of COVID-19 transmission influenced their decision-making. Above-normal anxiety, and depression scores, were found in four, and six patients, respectively. Neither sex, age, years of treatment, anxiety, or depression were found to be associated with willingness to consider self-infusion therapy. Conclusions Although there are many reasons AATD patients may benefit from AAT self-infusion, including decreased exposure to SARS-CoV-2, the majority preferred home nurse-infused therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s41030-022-00182-z.
Collapse
Affiliation(s)
| | | | - Xiang Zhan
- Penn State College of Medicine, Hershey, PA, USA
| | - Sundeep Kaur
- Penn State College of Medicine, Hershey, PA, USA
| | - Timothy Craig
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine and Pediatrics, Penn State Health, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
11
|
Dutta AK, Goswami K. Association of Alpha 1 Antitrypsin Deficiency with COVID-19 Mortality: Basis for Clinical Trials. FRONTIERS OF COVID-19 2022:325-336. [DOI: 10.1007/978-3-031-08045-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|