1
|
Milenina LS, Krutetskaya ZI, Antonov VG, Krutetskaya NI. Sigma-1 Receptor Ligands Chlorpromazine and Trifluoperazine Attenuate Ca 2+ Responses in Rat Peritoneal Macrophages. CELL AND TISSUE BIOLOGY 2022; 16:233-244. [PMID: 35668825 PMCID: PMC9136207 DOI: 10.1134/s1990519x22030075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
Abstract
Sigma-1 receptors are ubiquitous multifunctional ligand-regulated molecular chaperones in the endoplasmic reticulum membrane with a unique history, structure, and pharmacological profile. Sigma-1 receptors bind ligands of different chemical structure and pharmacological action and modulate a wide range of cellular processes in health and disease, including Ca2+ signaling. To elucidate the involvement of sigma-1 receptors in the processes of Ca2+ signaling in macrophages we studied the effect of sigma-1 receptor ligands, phenothiazine neuroleptics chlorpromazine and trifluoperazine, on Ca2+ responses induced by inhibitors of endoplasmic Ca2+-ATPases thapsigargin and cyclopiazonic acid, as well as by disulfide-containing immunomodulators Glutoxim and Molixan in rat peritoneal macrophages. Using Fura-2AM microfluorimetry we showed for the first time that chlorpromazine and trifluoperazine inhibit both phases of Ca2+ responses induced by Glutoxim, Molixan, thapsigargin, and cyclopiazonic acid in rat peritoneal macrophages. The data obtained indicate the participation of sigma-1 receptors in a complex signaling cascade caused by Glutoxim or Molixan and leading to an increase in intracellular Ca2+ concentration in macrophages. The results also indicate the involvement of sigma-1 receptors in the regulation of store-dependent Ca2+entry in macrophages.
Collapse
Affiliation(s)
- L. S. Milenina
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Z. I. Krutetskaya
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - V. G. Antonov
- Department of Clinical Biochemistry and Laboratory Diagnostics, Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - N. I. Krutetskaya
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Al-Otaibi JS, Mary YS, Mary S, Trivedi R, Chakraborty B, Yadav R, Celik I, Soman S. DFT and MD investigations of the biomolecules of phenothiazine derivatives: interactions with gold and water molecules and investigations in search of effective drug for SARS-CoV-2. J Biomol Struct Dyn 2022:1-12. [PMID: 35470781 DOI: 10.1080/07391102.2022.2068649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Theoretical analyses of two phenothiazine derivatives, 10-[3-(dimethylamino)-2-methylpropyl]phenothiazine-2-carbonitrile (CYM) and 2-[4-[3-(2-chlorophenothiazin-10-yl)propyl]piperazin-1-yl]ethanol (PAZ) are reported using density functional theory (DFT) and molecular dynamics (MD) simulations. Spectroscopic studies, different electronic and chemical parameters are predicted. Red and yellow in electrostatic potential plot is in rings and oxygen atom in PAZ and C≡N and rings in CYM are sensitive to nucleophilic attacks. The blue in hydrogen atoms refer to electrophilic attack in both PAZ and CYM. Stability of the protein-ligand complex formed with these derivatives and angiotensin-converting enzyme 2 (ACE2) was investigated using MD simulation. Radius of gyration of C-alpha atom of 6VW1 displayed the conformational convergence toward a compact structure leading to stable 6VW1-ligand complex which are also in agreement with root mean square fluctuation (RMSF) values. Localized area predicts reactive sites for Au and H2O molecules interaction with these compounds for further practical applications. Charge density is localized on both molecules and also tries to move toward Au-Au dimer and water molecule and such they are expected to contribute to the sensing performance. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Ravi Trivedi
- Department of Physics, Indian Institute of Technology, Mumbai, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Sreejit Soman
- Stemskills Research and Education Lab Private Limited, Faridabad, Hariyana, India
| |
Collapse
|
3
|
Törnquist K, Asghar MY, Srinivasan V, Korhonen L, Lindholm D. Sphingolipids as Modulators of SARS-CoV-2 Infection. Front Cell Dev Biol 2021; 9:689854. [PMID: 34222257 PMCID: PMC8245774 DOI: 10.3389/fcell.2021.689854] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic with severe consequences for afflicted individuals and the society as a whole. The biology and infectivity of the virus has been intensively studied in order to gain a better understanding of the molecular basis of virus-host cell interactions during infection. It is known that SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) via its spike protein. Priming of the virus by specific proteases leads to viral entry via endocytosis and to the subsequent steps in the life cycle of SARS-CoV-2. Sphingosine and ceramide belong to the sphingolipid family and are abundantly present in cell membranes. These lipids were recently shown to interfere with the uptake of virus particles of SARS-CoV-2 into epithelial cell lines and primary human nasal cells in culture. The mechanisms of action were partly different, as sphingosine blocked, whilst ceramide facilitated viral entry. Acid sphingomyelinase (ASM) is vital for the generation of ceramide and functional inhibition of ASM by drugs like amitriptyline reduced SARS-CoV-2 entry into the epithelial cells. Recent data indicates that serum level of sphingosine-1-phosphate (S1P) is a prognostic factor for COVID-2 severity. Further, stimulation of sphingosine-1-phosphate receptor 1 (S1PR1) might also constrain the hyper-inflammatory conditions linked to SARS-CoV-2. Here, we review recent exciting findings regarding sphingolipids in the uptake of SARS-CoV-2 and in the course of COVID-19 disease. More studies are required on the mechanisms of action and the potential use of antidepressant drugs and sphingolipid modifiers in SARS-CoV-2 infections and in the treatment of the more serious and fatal consequences of the disease.
Collapse
Affiliation(s)
- Kid Törnquist
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | | | - Vignesh Srinivasan
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Korhonen
- Department of Child and Adolescent Psychiatry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dan Lindholm
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Singh N, Villoutreix BO. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Comput Struct Biotechnol J 2021; 19:2537-2548. [PMID: 33936562 PMCID: PMC8074526 DOI: 10.1016/j.csbj.2021.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas and in a short period of time, several vaccines have been developed. But, while the race to find vaccines for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds. Finally, we question the overall lack of discussion and plan observed in academic research in many countries during this crisis and suggest that there is room for improvement.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Bruno O. Villoutreix
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| |
Collapse
|
5
|
Abstract
The sleep of millions has suffered during the global COVID-19 pandemic. Prevalence rates of 20-45% are reported globally for insomnia symptoms during the pandemic. Affected populations include the public and health care workers. A sleep deprived society faces the increased burden of COVID-related economic disruption, psychosocial problems, substance abuse, and suicide. Disordered sleep is not expected to disappear with control of infection, making interventions acutely necessary. The question becomes how to manage the sleep dysfunction during and after the pandemic. Depression and anxiety are prominent complaints during pandemic restrictions. Insomnia symptoms and fatigue continue even as mood improves in those who are in recovery from COVID-19 infection. Management of disturbed sleep and mental health is particularly needed in frontline health care workers. This overview describes 53 publications, as of February 2021, on disturbed sleep during the pandemic, treatment studies on COVID-related sleep disturbance, and need to rely on current treatment guidelines for common sleep disorders. The available research during the first year of COVID-19 has generally described symptoms of poor sleep rather than addressing treatment strategies. It covers digital cognitive behavioral therapy for insomnia (CBT-i) for the public and frontline workers, recognizing the need of greater acceptance and efficacy of controlled trials of CBT for affected groups. Recommendations based on a tiered public health model are discussed.
Collapse
|
6
|
Ahmad M, Beg BM, Majeed A, Areej S, Riffat S, Rasheed MA, Mahmood S, Mushtaq RMZ, Hafeez MA. Epidemiological and Clinical Characteristics of COVID-19: A Retrospective Multi-Center Study in Pakistan. Front Public Health 2021; 9:644199. [PMID: 33937174 PMCID: PMC8079641 DOI: 10.3389/fpubh.2021.644199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
The emergence of a pathogen responsible for a mysterious respiratory disease was identified in China and later called a novel coronavirus. This disease was named COVID-19. The present study seeks to determine the epidemiological and clinical characteristics of COVID-19 in Pakistan. This report will exhibit a linkage between epidemiology and clinical aspects which in turn can be helpful to prevent the transmission of the virus in Pakistan. A retrospective, multiple center study was performed by collecting the data from patients' with their demographics, epidemiological status, history of co-morbid conditions, and clinical manifestations of the disease. The data was collected from 31 public-sector and 2 private hospitals across Pakistan by on-field healthcare workers. A Chi-square test was applied to assess the relationship between categorical data entries. A total of 194 medical records were examined. The median age of these patients was found to be 34 years. A total of 53.6% active cases were present including 41.2% males and 12.4% females till the end of the study. Adults accounted for most of the cases (94.3%) of COVID-19. Fever (86.60%), cough (85.05%), fatigue (36.60%), dyspnea (24.74%), and gastrointestinal discomfort (10.31%) were among the most frequently reported signs and symptoms by the patients. However, 4.12% of the total patient population remained asymptomatic. The median duration of hospital stay was found to be 14 (0-19) days. The earliest source of the spread of the virus may be linked to the foreigners traveling to Pakistan. Spread among men was more as compared to women. A few cases were found to be positive, due to the direct contact with pets or livestock. Hypertension (7.73%), diabetes (4.64%), cardiovascular conditions (2.58%) were the most common co-morbidities. The percentage mortality was 2.50% with the highest mortality among elders.
Collapse
Affiliation(s)
- Mehmood Ahmad
- Department of Pharmacology, Riphah International University, Lahore, Pakistan
| | - Bilal Mahmood Beg
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Arfa Majeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sadaf Areej
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sualeha Riffat
- Department of Pharmacology, Riphah International University, Lahore, Pakistan
| | - Muhammad Adil Rasheed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sammina Mahmood
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | | - Mian Abdul Hafeez
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
7
|
Villoutreix BO, Krishnamoorthy R, Tamouza R, Leboyer M, Beaune P. Chemoinformatic Analysis of Psychotropic and Antihistaminic Drugs in the Light of Experimental Anti-SARS-CoV-2 Activities. Adv Appl Bioinform Chem 2021; 14:71-85. [PMID: 33880039 PMCID: PMC8051956 DOI: 10.2147/aabc.s304649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction There is an urgent need to identify therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. Objective Based upon clinical observations, we proposed that some psychotropic and antihistaminic drugs could protect psychiatric patients from SARS-CoV-2 infection. This observation is investigated in the light of experimental in vitro data on SARS-CoV-2. Methods SARS-CoV-2 high-throughput screening results are available at the NCATS COVID-19 portal. We investigated the in vitro anti-viral activity of many psychotropic and antihistaminic drugs using chemoinformatics approaches. Results and Discussion We analyze our clinical observations in the light of SARS-CoV-2 experimental screening results and propose that several cationic amphiphilic psychotropic and antihistaminic drugs could protect people from SARS-CoV-2 infection; some of these molecules have very limited adverse effects and could be used as prophylactic drugs. Other cationic amphiphilic drugs used in other disease areas are also highlighted. Recent analyses of patient electronic health records reported by several research groups indicate that some of these molecules could be of interest at different stages of the disease progression. In addition, recently reported drug combination studies further suggest that it might be valuable to associate several cationic amphiphilic drugs. Taken together, these observations underline the need for clinical trials to fully evaluate the potentials of these molecules, some fitting in the so-called category of broad-spectrum antiviral agents. Repositioning orally available drugs that have moderate side effects and should act on molecular mechanisms less prone to drug resistance would indeed be of utmost importance to deal with COVID-19.
Collapse
Affiliation(s)
- Bruno O Villoutreix
- INSERM U1141, NeuroDiderot, Université de Paris, Hôpital Robert-Debré, Paris, F-75019, France
| | - Rajagopal Krishnamoorthy
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Philippe Beaune
- INSERM U1138, Centre de Recherche des Cordeliers, Université de Paris, Paris, 75006, France
| |
Collapse
|