1
|
Yin Q, Yang Y, Qu Z, Ouchari M, Zeng L, Tang S, Zheng J, Zhang S, Ma H, Chen Y, Wang J, Shi L, Zheng X. Unraveling the Multifaceted Roles of Atypical Chemokine Receptors in Breast Cancer. J Interferon Cytokine Res 2025; 45:43-52. [PMID: 39526942 DOI: 10.1089/jir.2024.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Breast cancer (BC) remains one of the most prevalent and deadly malignancies among women globally. A deeper understanding of the molecular mechanisms driving BC progression and metastasis is essential for the development of effective therapeutic strategies. While traditional chemokine receptors are well known for their roles in immune cell migration and positioning, atypical chemokine receptors (ACKRs) have recently gained attention as key modulators in cancer-related processes. Unlike conventional receptors, ACKRs-comprising ACKR1, ACKR2, ACKR3, and ACKR4-primarily function by scavenging chemokines, regulating their availability, and modulating receptor signaling in a ligand-independent manner. This review aims to elucidate the roles of ACKRs in BC, focusing on their influence on the tumor microenvironment (TME), cancer cell proliferation, survival, metastasis, and angiogenesis. Additionally, we will explore the potential of ACKRs as diagnostic and prognostic markers and assess their viability as therapeutic targets. By synthesizing recent research findings and highlighting future research directions, this review seeks to provide a comprehensive understanding of the significance of ACKRs in BC and underscore the need for continued investigation into their therapeutic potential.
Collapse
Affiliation(s)
- Qinan Yin
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yisha Yang
- Department of Finance and Management, Henan Vocational College of Agriculture at Luoyang, Luoyang, China
| | - Zhifeng Qu
- Radiology Department, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Mouna Ouchari
- Laboratory of Translational Redox Medicine (TRx Med), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Li Zeng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Siya Tang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiayu Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Shunshun Zhang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Haodi Ma
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Youyou Chen
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiayi Wang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
| | - Xuewei Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Yoshimura T, Li C, Wang Y, Matsukawa A. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. Cell Mol Immunol 2023; 20:714-738. [PMID: 37208442 PMCID: PMC10310763 DOI: 10.1038/s41423-023-01013-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/17/2023] [Indexed: 05/21/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide, and metastasis is the leading cause of death in cancer patients. Human monocyte chemoattractant protein-1 (MCP-1/CCL2) was isolated from the culture supernatants of not only mitogen-activated peripheral blood mononuclear leukocytes but also malignant glioma cells based on its in vitro chemotactic activity toward human monocytes. MCP-1 was subsequently found to be identical to a previously described tumor cell-derived chemotactic factor thought to be responsible for the accumulation of tumor-associated macrophages (TAMs), and it became a candidate target of clinical intervention; however, the role of TAMs in cancer development was still controversial at the time of the discovery of MCP-1. The in vivo role of MCP-1 in cancer progression was first evaluated by examining human cancer tissues, including breast cancers. Positive correlations between the level of MCP-1 production in tumors and the degree of TAM infiltration and cancer progression were established. The contribution of MCP-1 to the growth of primary tumors and metastasis to the lung, bone, and brain was examined in mouse breast cancer models. The results of these studies strongly suggested that MCP-1 is a promoter of breast cancer metastasis to the lung and brain but not bone. Potential mechanisms of MCP-1 production in the breast cancer microenvironment have also been reported. In the present manuscript, we review studies in which the role of MCP-1 in breast cancer development and progression and the mechanisms of its production were examined and attempt to draw a consensus and discuss the potential use of MCP-1 as a biomarker for diagnosis.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| | - Chunning Li
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
3
|
Zhang B, Wang S, Fu Z, Gao Q, Yang L, Lei Z, Shi Y, Le K, Xiong J, Liu S, Zhang J, Su J, Chen J, Liu M, Niu B. Single-cell RNA sequencing reveals intratumoral heterogeneity and potential mechanisms of malignant progression in prostate cancer with perineural invasion. Front Genet 2023; 13:1073232. [PMID: 36712886 PMCID: PMC9875799 DOI: 10.3389/fgene.2022.1073232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Prostate cancer (PCa) is the second most common cancer among men worldwide. Perineural invasion (PNI) was a prominent characteristic of PCa, which was recognized as a key factor in promoting PCa progression. As a complex and heterogeneous disease, its true condition is difficult to explain thoroughly with conventional bulk RNA sequencing. Thus, an improved understanding of PNI-PCa progression at the single-cell level is needed. Methods: In this study, we performed scRNAseq on tumor tissues of three PNI-PCa patients. Principal component analysis (PCA) and Uniform manifold approximation and projection (UMAP) were used to reduce dimensionality and visualize the cellular composition of tumor tissues. The differently expressed genes among each cluster were identified by EdgeR. GO enrichment analysis was used to understand the roles of genes within the clusters. Pseudotime cell trajectory was used to reveal the molecular pathways underlying cell fate decisions and identify genes whose expression changed as the cells underwent transition. We applied CellPhoneDB to identify cell-cell interactions among the epithelial and neural cells in PNI-PCa. Results: Analysis of the ∼17,000 single-cell transcriptomes in three PNI prostate cancer tissues, we identified 12 major cell clusters, including neural cells and two epithelial subtypes with different expression profiles. We found that basal/intermediate epithelial cell subtypes highly expressed PCa progression-related genes, including PIGR, MMP7, and AGR2. Pseudotime trajectory analysis showed that luminal epithelial cells could be the initiating cells and transition to based/intermediate cells. Gene ontology (GO) enrichment analysis showed that pathways related to cancer progressions, such as lipid catabolic and fatty acid metabolic processes, were significantly enriched in basal/intermediate cells. Our analysis also suggested that basal/intermediate cells communicate closely with neural cells played a potential role in PNI-PCa progression. Conclusion: These results provide our understanding of PNI-PCa cellular heterogeneity and characterize the potential role of basal/intermediate cells in the PNI-PCa progression.
Collapse
Affiliation(s)
- Bao Zhang
- Department of Urology, Aerospace Center Hospital, Beijing, China,*Correspondence: Bao Zhang, ; Beifang Niu,
| | - Shenghan Wang
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Zhichao Fu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Qiang Gao
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Lin Yang
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Zhentao Lei
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Yuqiang Shi
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Kai Le
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Jie Xiong
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Siyao Liu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Jiali Zhang
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Junyan Su
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Jing Chen
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Mengyuan Liu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China,Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - Beifang Niu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China,Computer Network Information Center, Chinese Academy of Sciences, Beijing, China,University of the Chinese Academy of Sciences, Beijing, China,*Correspondence: Bao Zhang, ; Beifang Niu,
| |
Collapse
|
4
|
Zhou X, Zhang J, Lv W, Zhao C, Xia Y, Wu Y, Zhang Q. The pleiotropic roles of adipocyte secretome in remodeling breast cancer. J Exp Clin Cancer Res 2022; 41:203. [PMID: 35701840 PMCID: PMC9199207 DOI: 10.1186/s13046-022-02408-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is the leading female cancer type and the cause of cancer-related mortality worldwide. Adipocytes possess important functions of energy supply, metabolic regulation, and cytokine release, and are also the matrix cell that supports mammary gland tissue. In breast cancer tumor microenvironment (TME), adipocytes are the prominent stromal cells and are implicated in inflammation, metastatic formation, metabolic remodeling, and cancer susceptibility.
Main body
It is well-established that adipocyte secretome is a reservoir engaged in the regulation of tumor cell behavior by secreting a large number of cytokines (IL-6, IL-8, and chemokines), adipokines (leptin, adiponectin, autotaxin, and resistin), lipid metabolites (free fatty acids and β-hydroxybutyrate), and other exosome-encapsulated substances. These released factors influence the evolution and clinical outcome of breast cancer through complex mechanisms. The progression of breast cancer tumors revolves around the tumor-adipose stromal network, which may contribute to breast cancer aggressiveness by increasing the pro-malignant potential of TME and tumor cells themselves. Most importantly, the secretome alterations of adipocytes are regarded as distinctly important targets for breast cancer diagnosis, treatment, and drug resistance.
Conclusion
Therefore, this review will provide a comprehensive description of the specific adipocyte secretome characteristics and interactions within TME cell populations, which will enable us to better tailor strategies for tumor stratification management and treatment.
Collapse
|