1
|
Zhang Z, Wan X, Li X, Wan C. Effects of a Shift of the Signal Peptide Cleavage Site in Signal Peptide Variant on the Synthesis and Secretion of SARS-CoV-2 Spike Protein. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196688. [PMID: 36235223 PMCID: PMC9570739 DOI: 10.3390/molecules27196688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic is caused by SARS-CoV-2; the spike protein is a key structural protein that mediates infection of the host by SARS-CoV-2. In this study, we aimed to evaluate the effects of signal peptide on the secretion and release of SARS-CoV-2 spike protein. Therefore, we constructed a signal peptide deletion mutant and three signal peptide site-directed mutants. The (H) region and (C) region in the signal peptide of L5F-S13I mutant have changed significantly, compared with wild type, L5F and S13I. We demonstrated the effects of signal peptide on the secretion and synthesis of RBD protein, finding that mutation of S13 to I13 on the signal peptide is more conducive to the secretion of RBD protein, which was mainly due to the shift of the signal peptide cleavage site in the mutant S13I. Here, we not only investigated the structure of the N-terminal signal peptide of the SARS-CoV-2 spike protein but also considered possible secretory pathways. We suggest that the development of drugs that target the signal peptide of the SARS-CoV-2 spike protein may have potential to treat COVID-19 in the future.
Collapse
Affiliation(s)
- Zhikai Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xuan Wan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyue Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chengsong Wan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Correspondence:
| |
Collapse
|
2
|
Zhang Z, Wan X, Li X, Cai S, Wan C. Enhancing the Immunogenicity of RBD Protein Variants through Amino Acid E484 Mutation in SARS-CoV-2. Viruses 2022; 14:v14092020. [PMID: 36146826 PMCID: PMC9506138 DOI: 10.3390/v14092020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
In the context of the COVID-19 pandemic, conducting antibody testing and vaccination is critical. In particular, the continued evolution of SARS-CoV-2 raises concerns about the effectiveness of vaccines currently in use and the activity of neutralizing antibodies. Here, we used the Escherichia coli expression system to obtain nine different SARS-CoV-2 RBD protein variants, including six single-point mutants, one double-point mutant, and two three-point mutants. Western blotting results show that nine mutants of the RBD protein had strong antigenic activity in vitro. The immunogenicity of all RBD proteins was detected in mice to screen for protein mutants with high immunogenicity. The results show that the mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y, especially the former two, had better immunogenicity than the wild type. This suggests that site E484 has a significant impact on the function of the RBD protein. Our results demonstrate that recombinant RBD protein expressed in E. coli can be an effective tool for the development of antibody detection methods and vaccines.
Collapse
Affiliation(s)
- Zhikai Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xuan Wan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyue Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Correspondence: (S.C.); (C.W.)
| | - Chengsong Wan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Correspondence: (S.C.); (C.W.)
| |
Collapse
|
3
|
Apostolopoulos V, Bojarska J, Feehan J, Matsoukas J, Wolf W. Smart therapies against global pandemics: A potential of short peptides. Front Pharmacol 2022; 13:914467. [PMID: 36046832 PMCID: PMC9420997 DOI: 10.3389/fphar.2022.914467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Joanna Bojarska
- Technical University of Lodz, Department of Chemistry, Institute of General and Ecological Chemistry, Lodz, Poland
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- NewDrug, Patras Science Park, Patras, Greece
| | - Wojciech Wolf
- Technical University of Lodz, Department of Chemistry, Institute of General and Ecological Chemistry, Lodz, Poland
| |
Collapse
|
4
|
Hadi-Alijanvand H, Di Paola L, Hu G, Leitner DM, Verkhivker GM, Sun P, Poudel H, Giuliani A. Biophysical Insight into the SARS-CoV2 Spike-ACE2 Interaction and Its Modulation by Hepcidin through a Multifaceted Computational Approach. ACS OMEGA 2022; 7:17024-17042. [PMID: 35600142 PMCID: PMC9113007 DOI: 10.1021/acsomega.2c00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/15/2022] [Indexed: 05/08/2023]
Abstract
At the center of the SARS-CoV2 infection, the spike protein and its interaction with the human receptor ACE2 play a central role in the molecular machinery of SARS-CoV2 infection of human cells. Vaccine therapies are a valuable barrier to the worst effects of the virus and to its diffusion, but the need of purposed drugs is emerging as a core target of the fight against COVID19. In this respect, the repurposing of drugs has already led to discovery of drugs thought to reduce the effects of the cytokine storm, but still a drug targeting the spike protein, in the infection stage, is missing. In this work, we present a multifaceted computational approach strongly grounded on a biophysical modeling of biological systems, so to disclose the interaction of the SARS-CoV2 spike protein with ACE2 with a special focus to an allosteric regulation of the spike-ACE2 interaction. Our approach includes the following methodologies: Protein Contact Networks and Network Clustering, Targeted Molecular Dynamics, Elastic Network Modeling, Perturbation Response Scanning, and a computational analysis of energy flow and SEPAS as a protein-softness and monomer-based affinity predictor. We applied this approach to free (closed and open) states of spike protein and spike-ACE2 complexes. Eventually, we analyzed the interactions of free and bound forms of spike with hepcidin (HPC), the major hormone in iron regulation, recently addressed as a central player in the COVID19 pathogenesis, with a special emphasis to the most severe outcomes. Our results demonstrate that, compared with closed and open states, the spike protein in the ACE2-bound state shows higher allosteric potential. The correspondence between hinge sites and the Allosteric Modulation Region (AMR) in the S-ACE complex suggests a molecular basis for hepcidin involvement in COVID19 pathogenesis. We verify the importance of AMR in different states of spike and then study its interactions with HPC and the consequence of the HPC-AMR interaction on spike dynamics and its affinity for ACE2. We propose two complementary mechanisms for HPC effects on spike of SARS-CoV-2; (a) HPC acts as a competitive inhibitor when spike is in a preinfection state (open and with no ACE2), (b) the HPC-AMR interaction pushes the spike structure into the safer closed state. These findings need clear molecular in vivo verification beside clinical observations.
Collapse
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department
of Biological Sciences, Institute for Advanced
Studies in Basic Sciences, Zanjan 45137-66731, Iran
| | - Luisa Di Paola
- Unit
of Chemical-Physics Fundamentals in Chemical Engineering, Department
of Engineering, Università Campus
Bio-Medico di Roma, via
Álvaro del Portillo 21, Rome 00128, Italy
| | - Guang Hu
- Center
for Systems Biology, Department of Bioinformatics, School of Biology
and Basic Medical Sciences, Soochow University, Suzhou 215123, China
- . Phone: +39 (06) 225419634
| | - David M. Leitner
- Department
of Chemistry, University of Nevada, Reno 89557, Nevada, United States
| | - Gennady M. Verkhivker
- Keck
Center for Science and Engineering, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange 92866, California, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine 92618, California, United States
| | - Peixin Sun
- Center
for Systems Biology, Department of Bioinformatics, School of Biology
and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Humanath Poudel
- Department
of Chemistry, University of Nevada, Reno 89557, Nevada, United States
| | - Alessandro Giuliani
- Environmental
and Health Department, Istituto Superiore
di Sanità, Rome 00161, Italy
| |
Collapse
|