1
|
Liu Z, Jin B, Rao D, Bentel MJ, Liu T, Gao J, Men Y, Liu J. Oxidative Transformation of Nafion-Related Fluorinated Ether Sulfonates: Comparison with Legacy PFAS Structures and Opportunities of Acidic Persulfate Digestion for PFAS Precursor Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6415-6424. [PMID: 38528735 PMCID: PMC11008247 DOI: 10.1021/acs.est.3c06289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C-H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4-•), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C-H or -COO-, characterized the oxidation products, and quantified the F atom balance. The SO4-• oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4-• versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4-• and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4-• oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants.
Collapse
Affiliation(s)
- Zekun Liu
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
- Claros
Technologies Inc., Minneapolis, Minnesota 55413, United States
| | - Bosen Jin
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Dandan Rao
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Michael J. Bentel
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Tianchi Liu
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jinyu Gao
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yujie Men
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jinyong Liu
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Heo JW, An L, Kim MS, Youn DH, Kim YS. Preparation and characterization of zwitterion-substituted lignin/Nafion composite membranes. Int J Biol Macromol 2023; 253:127421. [PMID: 37838126 DOI: 10.1016/j.ijbiomac.2023.127421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
In this study, a novel zwitterion-substituted lignin (ZL) containing amino and sulfonic acid groups was synthesized, and ZL/Nafion composite membranes were fabricated as proton exchange membranes. Kraft lignin was modified using an aminosilane and 1,3-propanesultone via a continuous grafting reaction to provide zwitterionic moieties. Chemical structural analyses confirmed the successful introduction of the zwitterion moiety into lignin. In particular, the surface charge of ZL is positive in an acidic medium and negative in a basic medium, suggesting that ZL is a zwitterionic material. ZL was incorporated into a Nafion membrane to enhance its ion exchange capacity, thermal stability, and hydrophilicity. The proton conductivity of ZL/Nafion 0.5 %, 151.0 mS/cm, was 55.3 % higher than that of unmodified ML (methanol-soluble lignin)/Nafion 0.5 % (97.2 mS/cm), indicating that the zwitterion moiety of ZL enhances the proton transport ability. In addition, oxidative stability evaluation confirmed that ZL/Nafion 2 % was chemically more durable than pure Nafion. This confirmed that using lignin as a membrane additive yielded positive results in terms of chemical durability and oxidation stability in Nafion. Therefore, ZL is expected to be utilized as a multifunctional additive and exhibits the potential for fuel cell applications.
Collapse
Affiliation(s)
- Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Liangliang An
- Faculty of Chemical and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Min Soo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Duck Hyun Youn
- Department of Chemical Engineering, Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
3
|
Wu J, Wang F, Fan X, Chu J, Cheng F, Hu F, Liu H, Zhang Q, Xu Z, Gong C. Phosphoric acid-doped Gemini quaternary ammonium-grafted SPEEK membranes with superhigh proton conductivity and mechanical strength for direct methanol fuel cells. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Prakash O, Tiwari S, Maiti P. Fluoropolymers and Their Nanohybrids As Energy Materials: Application to Fuel Cells and Energy Harvesting. ACS OMEGA 2022; 7:34718-34740. [PMID: 36211045 PMCID: PMC9535728 DOI: 10.1021/acsomega.2c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The current review article provides deep insight into the fluoropolymers and their applications in energy technology, especially in the field of energy harvesting and the development of fuel cell electrolyte polymeric membranes. Fluoropolymers have gained wide attention in the field of energy applications due to their versatile properties. The incorporation of nanofillers within the fluoropolymer to develop the nanohybrid results in an enhancement in the properties, like thermal, mechanical, gas permeation, different fuel cross-over phenomena through the membrane, hydrophilic/hydrophobic nature, ion transport, and piezo-electric properties for fabricating energy devices. The properties of nanohybrid materials/membranes are influenced by several factors, such as type of filler, their size, amount of filler, level of dispersion, surface acidity, shape, and formation of networking within the polymer matrix. Fluoropolymer-based nanohybrids have replaced several commercial materials due to their chemical inertness, better efficacy, and durability. The addition of certain electroactive fillers in the polymer matrix enhances the polar phase, which enhances the applicability of the hybrid for fuel cell and energy-harvesting applications. Poly(vinylidene fluoride) is one of the remarkable fluoropolymers in the field of energy applications such as fuel cell and piezoelectric energy harvesting. In the present review, a detailed discussion of the different kinds of nanofillers and their role in energy harvesting and fuel cell electrolyte membranes is projected.
Collapse
Affiliation(s)
- Om Prakash
- Kashi
Naresh Government PG College Gyanpur, Bhadohi 221304, India
| | - Shivam Tiwari
- School
of the Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Pralay Maiti
- School
of the Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
5
|
Development of sulfonic acid–functionalized tetraethyl orthosilicate derivative cross-linked with sulfonated PEEK membranes for fuel cell applications. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Maiti TK, Singh J, Majhi J, Ahuja A, Maiti S, Dixit P, Bhushan S, Bandyopadhyay A, Chattopadhyay S. Advances in polybenzimidazole based membranes for fuel cell applications that overcome Nafion membranes constraints. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Maiti TK, Singh J, Maiti SK, Majhi J, Ahuja A, Singh M, Bandyopadhyay A, Manik G, Chattopadhyay S. Molecular dynamics simulations and experimental studies of the perfluorosulfonic acid-based composite membranes containing sulfonated graphene oxide for fuel cell applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Selim A, Szijjártó GP, Románszki L, Tompos A. Development of WO 3-Nafion Based Membranes for Enabling Higher Water Retention at Low Humidity and Enhancing PEMFC Performance at Intermediate Temperature Operation. Polymers (Basel) 2022; 14:polym14122492. [PMID: 35746074 PMCID: PMC9227791 DOI: 10.3390/polym14122492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
The proton exchange membrane (PEM) represents a pivotal material and a key challenge in developing fuel cell science and hydrogen technology. Nafion is the most promising polymer which will lead to its commercialisation. Hybrid membranes of nanosized tungsten oxide (WO3) and Nafion were fabricated, characterised, and tested in a single cell. The incorporation of 10 wt% WO3 resulted in 21% higher water uptake, 11.7% lower swelling ratio, almost doubling the hydration degree, and 13% higher mechanical stability of the hybrid membrane compared to the Nafion XL. Compared to commercial Nafion XL, the rNF-WO-10 hybrid membrane showed an 8.8% and 20% increase in current density of the cell at 0.4 V operating at 80 and 95 °C with 1.89 and 2.29 A/cm2, respectively. The maximum power density has increased by 9% (0.76 W/cm2) and 19.9% (0.922 W/cm2) when operating at the same temperatures compared to the commercial Nafion XL membrane. Generally, considering the particular structure of Nafion XL, our Nafion-based membrane with 10 wt% WO3 (rNF-WO-10) is a suitable PEM with a comparable performance at different operating conditions.
Collapse
Affiliation(s)
- Asmaa Selim
- Research Centre for Natural Sciences, Renewable Energy Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (G.P.S.); (A.T.)
- National Research Centre, Chemical Engineering and Pilot Plat Department, Engineering and Renewable Energy Research Institute, 33 El Bohouth Street, Giza 12622, Egypt
- Correspondence:
| | - Gábor Pál Szijjártó
- Research Centre for Natural Sciences, Renewable Energy Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (G.P.S.); (A.T.)
| | - Loránd Románszki
- Research Centre for Natural Sciences, Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary;
| | - András Tompos
- Research Centre for Natural Sciences, Renewable Energy Group, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (G.P.S.); (A.T.)
| |
Collapse
|
9
|
Song J, Sun L, Duan J, Wang W, Qu S. Preparation and performance of sulfonated poly(ether ether ketone) membranes enhanced with ammonium ionic liquid and graphene oxide. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083211069929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The exploration of proton exchange membranes with excellent performance has always been under focus for improving the performance of proton exchange membrane fuel cells. In this study, novel ternary composite proton exchange membranes based on sulfonated poly(ether ether ketone) (SPEEK), triethylamine phosphate (TEAP) as the ammonium ionic liquid (AIL), and graphene oxide (GO) were prepared. The prepared membranes were characterized for their physical, physico-chemical, structural, morphological, thermal, mechanical, and electrical characteristics. The thermal stability of the SPEEK membrane was improved by the addition of GO and TEAP. GO was inserted into the composite membrane to form proton transfer channels. The amine ions in AIL formed acid–base pairs with the sulfonic acid group, whereas the oxygen-containing group on GO formed hydrogen bonds with the phosphate group. These groups interacted with each other to form a honeycomb-like structure, which anchored the AIL in the membrane and reduced its loss, providing additional sites for proton transport at higher temperatures. The proton conductivity of the SPEEK/AIL/GO-2 membrane reached 17.345 mS/cm at 120°C, which was 2.09 times higher than that of the pristine SPEEK membrane. This study provides the possibility for better preparation of proton exchange membranes used for high-temperature proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Jinxun Song
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Lijun Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Jihai Duan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Weiwen Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Shuguo Qu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| |
Collapse
|
10
|
Wen T, Zheng Z, Qiu L, Yuan J, Yin P. Uniform hybrid nanoribbons from unidirectional inclusion crystallization controlled by size-amphiphilic block copolymers. NANOSCALE 2020; 12:16884-16894. [PMID: 32766617 DOI: 10.1039/d0nr04567e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we suggest a unique approach to control the growth of hybrid crystals of silicotungstic acid (STA) by introducing a poly(ethylene oxide) (PEO)-containing block copolymer and a poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) block copolymer (MEM BCP). Remarkably, perfectly straight ribbon-like lamellae with a uniform width and a large length/width ratio (>200) can be obtained. The length of hybrid nanoribbons can be tuned by annealing time and temperature, whereas the width is dependent on the molecular weight of the PEO mid-block. The stability of hybrid nanoribbons has been investigated against solvent vapor, high temperatures and the presence of phosphotungstic acid (PTA). The formation of hybrid nanoribbons leads to enhanced mechanical properties and proton conductivities of STA hybrid nanocomposites. This effective approach will provide a representative strategy to the control of crystalline hybrid materials in the solid state.
Collapse
Affiliation(s)
- Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology (SCUT), Guangzhou, 510640, China.
| | | | | | | | | |
Collapse
|
11
|
Mukherjee R, Mandal AK, Banerjee S. Sulfonated poly(arylene ether sulfone) functionalized polysilsesquioxane hybrid membranes with enhanced proton conductivity. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractSulfopropylated polysilsesquioxane and –COOH containing fluorinated sulfonated poly(arylene ether sulfone) composite membranes (SPAES-SS-X) have been prepared via an in situ sol–gel reaction through the solution casting technique. The composite membranes showed excellent thermal and chemical stability, compared to the pristine SPAES membrane. The uniform dispersion of the sulfonated SiOPS nanoparticles on the polymer matrix was observed from the scanning electron microscope images. Atomic force microscopy and transmission electron microscopy images indicated significantly better phase-separated morphology and connectivity of the ionic domains of the composite membranes than the pristine SPAES membrane. The composite membranes showed considerable improvement in proton conductivity and oxidative stability than the pristine copolymer membrane under similar test conditions.
Collapse
Affiliation(s)
- Rajdeep Mukherjee
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Arun Kumar Mandal
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Susanta Banerjee
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
12
|
Wen T, Qiu L, Zheng Z, Gong Y, Yuan J, Wang Y, Huang M, Yin P. Inclusion Crystallization of Silicotungstic Acid and Poly(ethylene oxide) and Its Impact on Proton Conductivities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology (SCUT),Guangzhou 510640, China
| | - Lu Qiu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology (SCUT),Guangzhou 510640, China
| | - Zhao Zheng
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology (SCUT),Guangzhou 510640, China
| | - Yuqing Gong
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology (SCUT),Guangzhou 510640, China
| | - Jun Yuan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology (SCUT),Guangzhou 510640, China
| | - Yingying Wang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology (SCUT),Guangzhou 510640, China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology (SCUT),Guangzhou 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology (SCUT),Guangzhou 510640, China
| |
Collapse
|
13
|
Buruga K, Song H, Shang J, Bolan N, Jagannathan TK, Kim KH. A review on functional polymer-clay based nanocomposite membranes for treatment of water. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120584. [PMID: 31419722 DOI: 10.1016/j.jhazmat.2019.04.067] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/12/2019] [Accepted: 04/20/2019] [Indexed: 06/10/2023]
Abstract
Water is essential for every living being. Increasing population, mismanagement of water sources, urbanization, industrialization, globalization, and global warming have all contributed to the scarcity of fresh water sources and the growing demand of such resources. Securing and allocating sufficient water resources has thus become one of the current major global challenges. Membrane technology has dominated the field of water purification due to its ease of usage and fabrication with high efficiency. The development of novel membrane materials can hence play a central role in advancing the field of membrane technology. It is noted that polymer-clay nanocomposites have been used widely for treatment of waste water. Nonetheless, not much efforts have been put to functionalize their membranes to be selective for specific targets. This review was organized to offer better insights into various types of functional polymer and clays composite membranes developed for efficient treatment and purification of water/wastewater. Our discussion was extended further to evaluate the efficacy of membrane techniques employed in the water industry against major chemical (e.g., heavy metal, dye, and phenol) and biological contaminants (e.g., biofouling).
Collapse
Affiliation(s)
- Kezia Buruga
- Department of Chemical Engineering, National Institute of Technology Karnataka Surathkal 575025, India
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nanthi Bolan
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
14
|
Woo SH, Taguet A, Otazaghine B, Mosdale A, Rigacci A, Beauger C. Physicochemical properties of Aquivion/fluorine grafted sepiolite electrolyte membranes for use in PEMFC. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Self-Assembly Investigations of Sulfonated Poly(methyl methacrylate-block-styrene) Diblock Copolymer Thin Films. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/4375838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly(methyl methacrylate-block-styrene) block copolymers (BCs) of low dispersity were selectively sulfonated on the styrenic segment. Several combinations of degree of polymerization and volume fraction of each block were investigated to access different self-assembled morphologies. Thin films of the sulfonated block copolymers were prepared by spin-coating and exposed to solvent vapor (SVA) or thermal annealing (TA) to reach equilibrium morphologies. Atomic force microscopy (AFM) was employed for characterizing the films, which exhibited a variety of nanometric equilibrium and nonequilibrium morphologies. Highly sulfonated samples revealed the formation of a honeycomb-like morphology obtained in solution rather than by the self-assembly of the BC in the solid state. The described morphologies may be employed in applications such as templates for nanomanufacturing and as cover and binder of catalytic particles in fuel cells.
Collapse
|
16
|
Liu L, Chen W, Li Y. A statistical study of proton conduction in Nafion®-based composite membranes: Prediction, filler selection and fabrication methods. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Aslan S, Ó Conghaile P, Leech D, Gorton L, Timur S, Anik U. Development of a Bioanode for Microbial Fuel Cells Based on the Combination of a MWCNT-Au-Pt Hybrid Nanomaterial, an Osmium Redox Polymer andGluconobacter oxydansDSM 2343 Cells. ChemistrySelect 2017. [DOI: 10.1002/slct.201702868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sema Aslan
- Muğla Sıtkı Koçman University; Faculty of Science, Chemistry Department; 48000 Kötekli / Muğla Turkey
| | - Peter Ó Conghaile
- School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Dónal Leech
- School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology; Lund University; PO Box 124 SE-22100 Lund Sweden
| | - Suna Timur
- Ege University; Faculty of Science, Biochemistry Department; 35100-Bornova Izmir Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center; Ege University; 35100-Bornova Izmir/ Turkey
| | - Ulku Anik
- Muğla Sıtkı Koçman University; Faculty of Science, Chemistry Department; 48000 Kötekli / Muğla Turkey
| |
Collapse
|
18
|
Li C, Huang N, Jiang Z, Tian X, Zhao X, Xu ZL, Yang H, Jiang ZJ. Sulfonated holey graphene oxide paper with SPEEK membranes on its both sides: a sandwiched membrane with high performance for semi-passive direct methanol fuel cells. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Jiang ZJ, Jiang Z, Tian X, Luo L, Liu M. Sulfonated Holey Graphene Oxide (SHGO) Filled Sulfonated Poly(ether ether ketone) Membrane: The Role of Holes in the SHGO in Improving Its Performance as Proton Exchange Membrane for Direct Methanol Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20046-20056. [PMID: 28535030 DOI: 10.1021/acsami.7b00198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO3H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.
Collapse
Affiliation(s)
- Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Zhongqing Jiang
- Department of Materials and Chemical Engineering, Ningbo University of Technology , Ningbo 315211, Zhejiang, China
| | - Xiaoning Tian
- Department of Materials and Chemical Engineering, Ningbo University of Technology , Ningbo 315211, Zhejiang, China
| | - Lijuan Luo
- Department of Materials and Chemical Engineering, Ningbo University of Technology , Ningbo 315211, Zhejiang, China
| | - Meilin Liu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology , Guangzhou 510006, China
- School of Materials Science & Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
20
|
Mohy Eldin MS, Nassr AA, Kashyout AB, Hassan EA. Novel sulfonated poly(glycidyl methacrylate) grafted Nafion membranes for fuel cell applications. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2011-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Ressam I, Krins N, Laberty‐Robert C, Selmane M, Lahcini M, Raihane M, Kadib AE, Perrot H, Sel O. Sulfonic Acid Functionalized Chitosan as a Sustainable Component for Proton Conductivity Management in PEMs. ChemistrySelect 2017. [DOI: 10.1002/slct.201601904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ibtissam Ressam
- Sorbonne UniversitésUPMC Univ. Paris 06, CNRS, UMR 8235, LISE F-75005 Paris France
- Cadi Ayyad Université, Faculté des Sciences et TechniquesLaboratoire Chimie Organométallique et Macromoléculaire – Matériaux Composites – Marrakech Morocco
| | - Natacha Krins
- Sorbonne UniversitésUPMC Univ Paris 06, CNRS-UMR 7574, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris 11 place Marcelin Berthelot 75005 Paris France
| | - Christel Laberty‐Robert
- Sorbonne UniversitésUPMC Univ Paris 06, CNRS-UMR 7574, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris 11 place Marcelin Berthelot 75005 Paris France
| | - Mohamed Selmane
- Sorbonne UniversitésUPMC Univ Paris 06, CNRS-UMR 7574, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris 11 place Marcelin Berthelot 75005 Paris France
| | - Mohammed Lahcini
- Cadi Ayyad Université, Faculté des Sciences et TechniquesLaboratoire Chimie Organométallique et Macromoléculaire – Matériaux Composites – Marrakech Morocco
| | - Mustapha Raihane
- Cadi Ayyad Université, Faculté des Sciences et TechniquesLaboratoire Chimie Organométallique et Macromoléculaire – Matériaux Composites – Marrakech Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center. Engineering Division.Euro-Mediterranean University of Fes (UEMF) Fès-Shore Route de Sidi Hrazem 30070 Fès Morocco
| | - Hubert Perrot
- Sorbonne UniversitésUPMC Univ. Paris 06, CNRS, UMR 8235, LISE F-75005 Paris France
| | - Ozlem Sel
- Sorbonne UniversitésUPMC Univ. Paris 06, CNRS, UMR 8235, LISE F-75005 Paris France
| |
Collapse
|
22
|
Nanohybrids of graphene oxide chemically-bonded with Nafion: Preparation and application for proton exchange membrane fuel cells. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.04.062] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Chen P, Hao L, Wu W, Li Y, Wang J. Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Nam B, Lee HU, Park SY, Son BC, Lee GW, Park JY, Lee YC. Dual-end-functionalized tin (Sn)-phyllosilicates for the esterification of oleic acid. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
|
26
|
Summers GJ, Kasiama MG, Summers CA. Poly(ether ether sulfone)s and sulfonated poly(ether ether sulfone)s derived from functionalized 1,1-diphenylethylene derivatives. POLYM INT 2016. [DOI: 10.1002/pi.5135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Gabriel J Summers
- Department of Chemistry; University of South Africa; PO Box 392, UNISA Pretoria 0003 South Africa
| | - M Ginette Kasiama
- Department of Chemistry; University of South Africa; PO Box 392, UNISA Pretoria 0003 South Africa
| | - Carol A Summers
- Department of Chemistry; University of South Africa; PO Box 392, UNISA Pretoria 0003 South Africa
| |
Collapse
|
27
|
Kumar V, Kumar P, Nandy A, Kundu PP. A nanocomposite membrane composed of incorporated nano-alumina within sulfonated PVDF-co-HFP/Nafion blend as separating barrier in a single chambered microbial fuel cell. RSC Adv 2016. [DOI: 10.1039/c6ra03598a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nano-Al2O3 is incorporated within the blend of sulfonated PVDF-co-HFP/Nafion in varying molar ratios for the preparation of nanocomposite membranes.
Collapse
Affiliation(s)
- Vikash Kumar
- Advanced Polymer Laboratory
- Department of Polymer Science & Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Piyush Kumar
- Advanced Polymer Laboratory
- Department of Polymer Science & Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Arpita Nandy
- Advanced Polymer Laboratory
- Department of Polymer Science & Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Patit P. Kundu
- Advanced Polymer Laboratory
- Department of Polymer Science & Technology
- University of Calcutta
- Kolkata-700009
- India
| |
Collapse
|
28
|
Beauger C, Lainé G, Burr A, Taguet A, Otazaghine B. Improvement of Nafion®-sepiolite composite membranes for PEMFC with sulfo-fluorinated sepiolite. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Kumar P, Kundu PP. Coating and lamination of Nafion117 with partially sulfonated PVdF for low methanol crossover in DMFC applications. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Maréchal M, Niepceron F, Gebel G, Mendil-Jakani H, Galiano H. Inside the structure of a nanocomposite electrolyte membrane: how hybrid particles get along with the polymer matrix. NANOSCALE 2015; 7:3077-3087. [PMID: 25607883 DOI: 10.1039/c4nr05330c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hybrid materials remain the target for a fruitful range of investigations, especially for energy devices. A number of hybrid electrolyte membranes consisting of inorganic and organic phases were then synthesized. Mechanical, solvent uptake and ionic transport properties were studied with the key point being the characteristic length scale of the interaction between the phases. A group of nanocomposite membranes made of polystyrenesulfonic acid-grafted silica particles embedded in a Poly(Vinylidene Fluoride-co-HexaFluoroPropene) (PVdF-HFP) matrix was studied by combining neutron and X-ray scatterings on the nanometer to angstrom scale. This approach allows for the variation in the morphology and structure as a function of particle loading to be described. These studies showed that the particles aggregate with increasing particle loading and these aggregates swell, creating a physical interaction with the polymer matrix. Particle loadings lower than 30 wt% induce a slight strain between both of the subphases, namely the polymer matrix and the particles. This strain is decreased with particle loading between 20 and 30 wt% conjointly with the beginning of proton conduction. Then the percolation of the aggregates is the beginning of a significant increase of the conduction without any strain. This new insight can give information on the variation in other important intrinsic properties.
Collapse
Affiliation(s)
- M Maréchal
- Univ. Grenoble Alpes, INAC-SPRAM, F-38000 Grenoble, France
| | | | | | | | | |
Collapse
|
31
|
Kumar P, Singh AD, Kumar V, Kundu PP. Incorporation of nano-Al2O3 within the blend of sulfonated-PVdF-co-HFP and Nafion for high temperature application in DMFCs. RSC Adv 2015. [DOI: 10.1039/c5ra07992f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nano-Al2O3 was incorporated into the blend of sulfonated-PVdF-co-HFP/Nafion using NMP (1-methyl-2-pyrrolidone) as a common solvent with the aim to develop an alternate membrane to be used in a single cell direct methanol fuel cell (DMFC).
Collapse
Affiliation(s)
- Piyush Kumar
- Advanced Polymer Laboratory
- Department of Polymer Science & Technology
- University of Calcutta
- Kolkata-700009
- India
| | - A. D. Singh
- Advanced Polymer Laboratory
- Department of Polymer Science & Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Vikash Kumar
- Advanced Polymer Laboratory
- Department of Polymer Science & Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Patit Paban Kundu
- Advanced Polymer Laboratory
- Department of Polymer Science & Technology
- University of Calcutta
- Kolkata-700009
- India
| |
Collapse
|
32
|
Devrim Y. Fabrication and Performance Evaluation of Hybrid Membrane based on a Sulfonated Polyphenyl Sulfone/Phosphotungstic acid/Silica for Proton Exchange Membrane Fuel Cell at Low Humidity Conditions. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.08.131] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
|
34
|
Yang L, Tang B, Wu P. A novel proton exchange membrane prepared from imidazole metal complex and Nafion for low humidity. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Li Y, Nguyen QT, Fatyeyeva K, Marais S. Water Sorption Behavior in Different Aromatic Ionomer Composites Analyzed with a “New Dual-Mode Sorption” Model. Macromolecules 2014. [DOI: 10.1021/ma501097k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yongli Li
- Laboratoire Polymères, Biopolymères et Surfaces, UMR 6270 & FR 3038, CNRS-Normandie Université-Université de Rouen, Bd. Maurice de Broglie, 76821 Mont Saint Aignan, France
| | - Quang T. Nguyen
- Laboratoire Polymères, Biopolymères et Surfaces, UMR 6270 & FR 3038, CNRS-Normandie Université-Université de Rouen, Bd. Maurice de Broglie, 76821 Mont Saint Aignan, France
| | - Kateryna Fatyeyeva
- Laboratoire Polymères, Biopolymères et Surfaces, UMR 6270 & FR 3038, CNRS-Normandie Université-Université de Rouen, Bd. Maurice de Broglie, 76821 Mont Saint Aignan, France
| | - Stéphane Marais
- Laboratoire Polymères, Biopolymères et Surfaces, UMR 6270 & FR 3038, CNRS-Normandie Université-Université de Rouen, Bd. Maurice de Broglie, 76821 Mont Saint Aignan, France
| |
Collapse
|
36
|
Li HY, Lee YY, Lai JY, Liu YL. Composite membranes of Nafion and poly(styrene sulfonic acid)-grafted poly(vinylidene fluoride) electrospun nanofiber mats for fuel cells. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.04.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
|
38
|
Dutta K, Kumar P, Das S, Kundu PP. Utilization of Conducting Polymers in Fabricating Polymer Electrolyte Membranes for Application in Direct Methanol Fuel Cells. POLYM REV 2014. [DOI: 10.1080/15583724.2013.839566] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Xiao P, Li J, Tang H, Wang Z, Pan M. Physically stable and high performance Aquivion/ePTFE composite membrane for high temperature fuel cell application. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Proton exchange membranes from sulfonated poly(ether ether ketone) reinforced with silica nanoparticles. HIGH PERFORM POLYM 2013. [DOI: 10.1177/0954008313487392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The feasibility of sulfonated poly(ether ether ketone) (SPEEK) membranes reinforced with unmodified silica (SiO2) and modified silica (SiO2–SO3H) nanoparticles as proton exchange membranes (PEMs) was investigated here. The sulfonated membranes were characterized for degree of sulfonation, thermal stability, as well as water/methanol uptake properties. The incorporation of SiO2 increased the hydrophilic behavior thus allowing more water retention, which facilitated an easy pathway for proton transfer. However, a reduction in proton conductivity was observed. The strong –SO3H/–SO3H interaction between SPEEK chains and SiO2–SO3H led to ionic cross-linking in the membrane structure, which compensated for this decrement in proton conductivity. The fuel cell performance study revealed the potential of SPEEK/SiO2–SO3H nanocomposite membrane to act as an efficient PEM for fuel cell application.
Collapse
|
41
|
Beauger C, Lainé G, Burr A, Taguet A, Otazaghine B, Rigacci A. Nafion®–sepiolite composite membranes for improved proton exchange membrane fuel cell performance. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.11.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
|
43
|
Chien HC, Tsai LD, Kelarakis A, Lai CM, Lin JN, Fang J, Zhu CY, Chang FC. Highly hydrated Nafion/activated carbon hybrids. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.08.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Narayanamoorthy B, Datta KKR, Eswaramoorthy M, Balaji S. Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3620-3626. [PMID: 22758652 DOI: 10.1021/am300697q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel Pt nanoparticle (Pt NP) embedded aminoclay/Nafion (Pt/AC/N) nanocomposite catalyst film was prepared for oxygen reduction reaction by sol-gel method. The prepared nanocomposite films were surface characterized using XRD and TEM and thermal stability was studied by TGA. The prepared film has firmly bound Pt NP and could exhibit an improved electro-reduction activity compared to vulcan carbon/Nafion supported Pt NP (Pt/VC/N). Moreover, the Pt/AC/N film possessed good stability in the acidic environment. The limiting current density of the Pt/AC/N film with 35.4 μg/cm(2) of Pt loading was found to be 4.2 mA/cm(2), which is 30% higher than that of the Pt/VC/N. The maximum H2O2 intermediate formation was found to be ∼1.6% and the reaction found to follow a four electron transfer mechanism. Accelerated durability test for 2000 potential cycles showed that ca. 78% of initial limiting current was retained. The results are encouraging for possible use of the Pt/AC/N as the free-standing electrocatalyst layer for polymer electrolyte membrane fuel cells.
Collapse
Affiliation(s)
- B Narayanamoorthy
- Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (SCSVMV University) , Enathur, Kanchipuram - 631 561, India
| | | | | | | |
Collapse
|
45
|
Preparation of high styrenic sulfonated polySEPS/clay composite film for proton exchange membranes (PEMs). J IND ENG CHEM 2012. [DOI: 10.1016/j.jiec.2012.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
NMR and Electrochemical Investigation of the Transport Properties of Methanol and Water in Nafion and Clay-Nanocomposites Membranes for DMFCs. MEMBRANES 2012; 2:325-45. [PMID: 24958179 PMCID: PMC4021886 DOI: 10.3390/membranes2020325] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 11/17/2022]
Abstract
Water and methanol transport behavior, solvents adsorption and electrochemical properties of filler-free Nafion and nanocomposites based on two smectite clays, were investigated using impedance spectroscopy, DMFC tests and NMR methods, including spin-lattice relaxation and pulsed-gradient spin-echo (PGSE) diffusion under variable temperature conditions. Synthetic (Laponite) and natural (Swy-2) smectite clays, with different structural and physical parameters, were incorporated into the Nafion for the creation of exfoliated nanocomposites. Transport mechanism of water and methanol appears to be influenced from the dimensions of the dispersed platelike silicate layers as well as from their cation exchange capacity (CEC). The details of the NMR results and the effect of the methanol solution concentration are discussed. Clays particles, and in particular Swy-2, demonstrate to be a potential physical barrier for methanol cross-over, reducing the methanol diffusion with an evident blocking effect yet nevertheless ensuring a high water mobility up to 130 °C and for several hours, proving the exceptional water retention property of these materials and their possible use in the DMFCs applications. Electrochemical behavior is investigated by cell resistance and polarization measurements. From these analyses it is derived that the addition of clay materials to recast Nafion decreases the ohmic losses at high temperatures extending in this way the operating range of a direct methanol fuel cell.
Collapse
|
47
|
Deivanayagam P, Ramanujam Ramamoorthy A, Jaisankar SN. Synthesis and characterization of sulfonated poly (arylene ether sulfone)/silicotungstic acid composite membranes for fuel cells. Polym J 2012. [DOI: 10.1038/pj.2012.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Mishra AK, Bose S, Kuila T, Kim NH, Lee JH. Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.11.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Mishra AK, Kuila T, Kim NH, Lee JH. Effect of peptizer on the properties of Nafion–Laponite clay nanocomposite membranes for polymer electrolyte membrane fuel cells. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2011.10.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
50
|
Labalme E, David G, Buvat P, Bigarre J, Boucheteau T. New hybrid membranes based on phosphonic acid functionalized silica particles for PEMFC. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.25895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|