1
|
Yang H, Zhang H, Kang C, Ji C, Shi D, Zhao D. Solvent-responsive covalent organic framework membranes for precise and tunable molecular sieving. SCIENCE ADVANCES 2024; 10:eads0260. [PMID: 39693424 DOI: 10.1126/sciadv.ads0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Membrane-based nanofiltration has the potential to revolutionize the large-scale treatment of organic solvents in various applications. However, the widely used commercial membranes suffer from low permeability, narrow structural tunability, and limited chemical resistance. Here, we report a strategy for fabricating covalent organic framework (COF) membranes with solvent-responsive structural flexibility. The interlayer shifting of these COF membranes in polar organic solvents results in sub-nanopores with high selectivity. High rejection rates (>99%), high permeance (>15 kilogram meter-2 hour-1 bar-1), and excellent organic solvent resistance of these smart COF membranes are achieved for a diverse array of nanofiltration applications.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| | - Haoyuan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chunqing Ji
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dongchen Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
2
|
Lee TH, Balcik M, Wu WN, Pinnau I, Smith ZP. Dual-phase microporous polymer nanofilms by interfacial polymerization for ultrafast molecular separation. SCIENCE ADVANCES 2024; 10:eadp6666. [PMID: 39141741 PMCID: PMC11323956 DOI: 10.1126/sciadv.adp6666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Fine-tuning microporosity in polymers with a scalable method has great potential for energy-efficient molecular separations. Here, we report a dual-phase molecular engineering approach to prepare microporous polymer nanofilms through interfacial polymerization. By integrating two micropore-generating units such as a water-soluble Tröger's base diamine (TBD) and a contorted spirobifluorene (SBF) motif, the resultant TBD-SBF polyamide shows an unprecedentedly high surface area. An ultrathin TBD-SBF membrane (~20 nm) exhibits up to 220 times improved solvent permeance with a moderate molecular weight cutoff (~640 g mol-1) compared to the control membrane prepared by conventional chemistry, which outperforms currently reported polymeric membranes. We also highlight the great potential of the SBF-based microporous polyamides for hydrocarbon separations by exploring the isomeric effects of aqueous phase monomers to manipulate microporosity.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcel Balcik
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Wan-Ni Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ingo Pinnau
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Zachary P. Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Chen M, Hu G, Shen T, Zhang H, Sun JZ, Tang BZ. Applications of Polyacetylene Derivatives in Gas and Liquid Separation. Molecules 2023; 28:molecules28062748. [PMID: 36985720 PMCID: PMC10053683 DOI: 10.3390/molecules28062748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
As a low energy consumption, simple operation and environmentally friendly separation method, membrane separation has attracted extensive attention. Therefore, researchers have designed and synthesized various types of separation membrane, such as metal organic framework (MOF), covalent organic framework (COF), polymer of intrinsic micro-porosity (PIM) and mixed matrix membranes. Some substituted polyacetylenes have distorted structures and formed micropores due to the existence of rigid main chains and substituted side groups, which can be applied to the field of membrane separation. This article mainly introduces the development and application of substituted polyacetylenes in gas separation and liquid separation based on membrane technology.
Collapse
Affiliation(s)
- Manyu Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guangze Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tanxiao Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
4
|
Divakar S, Padaki M, Balakrishna RG. Review on Liquid-Liquid Separation by Membrane Filtration. ACS OMEGA 2022; 7:44495-44506. [PMID: 36530224 PMCID: PMC9753544 DOI: 10.1021/acsomega.2c02885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Liquid-liquid separation is crucial in the present circumstances. Substitution of the conventional types of separation like distillation and pervaporation is mandatory due to the high energy requirement of the two. The separation of organic mixtures has a huge potential in industries such as pharmaceutical, fine chemicals, fuels, textile, papers, and fertilizers. Membrane-affiliated separations are one of the prime techniques for liquid-liquid separations. Organic solvent nanofiltration, solvent-resistant nanofiltration, and ultrafiltration are a few methods through which organic liquid-liquid separation can be attained. Implementation of such a technology in chemical industries reduces the time consumption and is cost efficient. Even though a lot of research has been done, attention is needed in the field of organic-liquid separation aided by membranes. In this review, various membranes used for organic mixture separations such as polar-nonpolar, polar-polar, and nonpolar-nonpolar are discussed with a focus on membrane materials, additives, separation theory, separation type, experimental setup, fouling mitigation, surface modification, and major challenges. The review also offers insights and probable solutions for existing problems and also discusses the scope of research to be undertaken in the future.
Collapse
|
5
|
Ali S, Shah IA, Ihsanullah I, Feng X. Nanocomposite membranes for organic solvent nanofiltration: Recent advances, challenges, and prospects. CHEMOSPHERE 2022; 308:136329. [PMID: 36087722 DOI: 10.1016/j.chemosphere.2022.136329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Organic solvent nanofiltration (OSN) is an emerging technology for the separation of organic solvents that are relevant to the petrochemical, pharmaceutical, food and fine chemical industries. The separation performance of OSN membranes has continued to push the boundary up through advanced membrane fabrication techniques and novel materials for fabricating the membranes. Despite the many advantages, OSN membranes still face such challenges as low solvent permeability and durability in harsh organic solvent conditions. To overcome these limitations, attempts have been made to incorporate nanomaterial fillers into OSN membranes to improve their overall performance. This review analyzes the potential and use of nanomaterials for OSN membranes, including covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal oxides (MOs) and carbon-based materials (CBMs). Recent advances in the state-of-the-art nano-based OSN membranes, in the form of thin-film nanocomposite (TFN) membranes and mixed matrix membranes (MMMs), are reviewed. Moreover, the separation mechanisms of OSN with nano-based membranes are discussed. The challenges faced by these OSN membranes are also elaborated, and recommendations for further research in this field are provided.
Collapse
Affiliation(s)
- Sharafat Ali
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Izaz Ali Shah
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Xianshe Feng
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
6
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Zhou H, Akram A, Semiao AJ, Malpass-Evans R, Lau CH, McKeown NB, Zhang W. Enhancement of performance and stability of thin-film nanocomposite membranes for organic solvent nanofiltration using hypercrosslinked polymer additives. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Kuzminova A, Dmitrenko M, Zolotarev A, Korniak A, Poloneeva D, Selyutin A, Emeline A, Yushkin A, Foster A, Budd P, Ermakov S. Novel Mixed Matrix Membranes Based on Polymer of Intrinsic Microporosity PIM-1 Modified with Metal-Organic Frameworks for Removal of Heavy Metal Ions and Food Dyes by Nanofiltration. MEMBRANES 2021; 12:membranes12010014. [PMID: 35054540 PMCID: PMC8782022 DOI: 10.3390/membranes12010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
Nowadays, nanofiltration is widely used for water treatment due to its advantages, such as energy-saving, sustainability, high efficiency, and compact equipment. In the present work, novel nanofiltration membranes based on the polymer of intrinsic microporosity PIM-1 modified by metal-organic frameworks (MOFs)-MIL-140A and MIL-125-were developed to increase nanofiltration efficiency for the removal of heavy metal ions and dyes. The structural and physicochemical properties of the developed PIM-1 and PIM-1/MOFs membranes were studied by the spectroscopic technique (FTIR), microscopic methods (SEM and AFM), and contact angle measurement. Transport properties of the developed PIM-1 and PIM-1/MOFs membranes were evaluated in the nanofiltration of the model and real mixtures containing food dyes and heavy metal ions. It was found that the introduction of MOFs (MIL-140A and MIL-125) led to an increase in membrane permeability. It was demonstrated that the membranes could be used to remove and concentrate the food dyes and heavy metal ions from model and real mixtures.
Collapse
Affiliation(s)
- Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
- Correspondence: ; Tel.: +7-(812)363-60-00
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Andrey Zolotarev
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Daria Poloneeva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Artem Selyutin
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Alexei Emeline
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| | - Alexey Yushkin
- A. V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia;
| | - Andrew Foster
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (A.F.); (P.B.)
| | - Peter Budd
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (A.F.); (P.B.)
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (A.K.); (D.P.); (A.S.); (A.E.); (S.E.)
| |
Collapse
|
9
|
Soyekwo F, Liu C, Hu Y. Crosslinked copolystyrenes based membranes bearing alkylcarboxylated and alkylsulfonated side chains for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Eremin YS, Panchikhin MO, Grekhov AM. Effect of High Pressures on the Transport of Liquids through a Commercial Reverse Osmosis Polyamide Membrane on a Porous Substrate. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Lu Y, Qin Z, Wang N, An QF, Guo H. Counterion exchanged hydrophobic polyelectrolyte multilayer membrane for organic solvent nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Liu Q, Smith SJ, Konstas K, Ng D, Zhang K, Hill MR, Xie Z. Construction of ultrathin PTMSP/Porous nanoadditives membranes for highly efficient organic solvent nanofiltration (OSN). J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Dobyns BM, Kim JM, Li J, Jiang Z, Beckingham BS. Multicomponent transport of alcohols in Nafion 117 measured by in situ ATR FTIR spectroscopy. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Mousavi SR, Asghari M, Mahmoodi NM. Chitosan-wrapped multiwalled carbon nanotube as filler within PEBA thin film nanocomposite (TFN) membrane to improve dye removal. Carbohydr Polym 2020; 237:116128. [DOI: 10.1016/j.carbpol.2020.116128] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 01/23/2023]
|
16
|
|
17
|
Goh KS, Chong JY, Chen Y, Fang W, Bae TH, Wang R. Thin-film composite hollow fibre membrane for low pressure organic solvent nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117760] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Polyarylate membrane constructed from porous organic cage for high-performance organic solvent nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117505] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Aburabie JH, Puspasari T, Peinemann KV. Alginate-based membranes: Paving the way for green organic solvent nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Matveev DN, Plisko TV, Volkov VV, Vasilevskii VP, Bazhenov SD, Shustikov AA, Chernikova EV, Bildyukevich AV. Ultrafiltration Membranes Based on Various Acrylonitrile Copolymers. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619060015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Jiang SD, Koh AYK, Chong KH, Zhang S. Opening organic solvent pathways by molybdenum disulfide in mixed matrix membranes for molecular separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Yushkin A, Borisov R, Volkov V, Volkov A. Improvement of MWCO determination by using branched PEGs and MALDI method. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Li C, Li S, Tian L, Zhang J, Su B, Hu MZ. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN). J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Swelling of 9 polymers commonly employed for solvent-resistant nanofiltration membranes: A comprehensive dataset. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.09.059] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Facile fabrication of solvent resistant thin film composite membranes by interfacial crosslinking reaction between polyethylenimine and dibromo-p-xylene on polybenzimidazole substrates. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Sarango L, Paseta L, Navarro M, Zornoza B, Coronas J. Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.053] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Lim SK, Goh K, Bae TH, Wang R. Polymer-based membranes for solvent-resistant nanofiltration: A review. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
From ultrafiltration to nanofiltration: Hydrazine cross-linked polyacrylonitrile hollow fiber membranes for organic solvent nanofiltration. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Golzar K, Modarress H, Amjad-Iranagh S. Separation of gases by using pristine, composite and nanocomposite polymeric membranes: A molecular dynamics simulation study. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Marchetti P, Peeva L, Livingston A. The Selectivity Challenge in Organic Solvent Nanofiltration: Membrane and Process Solutions. Annu Rev Chem Biomol Eng 2017; 8:473-497. [PMID: 28511021 DOI: 10.1146/annurev-chembioeng-060816-101325] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent development of organic solvent nanofiltration (OSN) materials has been overwhelmingly directed toward tight membranes with ultrahigh permeance. However, emerging research into OSN applications is suggesting that improved separation selectivity is at least as important as further increases in membrane permeance. Membrane solutions are being proposed to improve selectivity, mostly by exploiting solute/solvent/membrane interactions and by fabricating tailored membranes. Because achieving a perfect separation with a single membrane stage is difficult, process engineering solutions, such as membrane cascades, are also being advocated. Here we review these approaches to the selectivity challenge, and to clarify our analysis, we propose a selectivity figure of merit that is based on the permselectivity between the two solutes undergoing separation as well as the ratio of their molecular weights.
Collapse
Affiliation(s)
- Patrizia Marchetti
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom; , ,
| | - Ludmila Peeva
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom; , ,
| | - Andrew Livingston
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom; , ,
| |
Collapse
|
31
|
Cheng XQ, Konstas K, Doherty CM, Wood CD, Mulet X, Xie Z, Ng D, Hill MR, Shao L, Lau CH. Hyper-Cross-Linked Additives that Impede Aging and Enhance Permeability in Thin Polyacetylene Films for Organic Solvent Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14401-14408. [PMID: 28375614 DOI: 10.1021/acsami.7b02295] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Membrane materials with high permeability to solvents while rejecting dissolved contaminants are crucial to lowering the energy costs associated with liquid separations. However, the current lack of stable high-permeability materials require innovative engineering solutions to yield high-performance, thin membranes using stable polymers with low permeabilities. Poly[1-(trimethylsilyl)-1-propyne] (PTMSP) is one of the most permeable polymers but is extremely susceptible to physical aging. Despite recent developments in anti-aging polymer membranes, this research breakthrough has yet to be demonstrated on thin PTMSP films supported on porous polymer substrates, a crucial step toward commercializing anti-aging membranes for industrial applications. Here we report the development of scalable, thin film nanocomposite membranes supported on polymer substrates that are resistant to physical aging while having high permeabilities to alcohols. The selective layer is made up of PTMSP and nanoporous polymeric additives. The nanoporous additives provide additional passageways to solvents, enhancing the high permeability of the PTMSP materials further. Through intercalation of polyacetylene chains into the sub-nm pores of organic additives, physical aging in the consequent was significantly hindered in continuous long-term operation. Remarkably we also demonstrate that the additives enhance both membrane permeability and rejection of dissolved contaminants across the membranes, as ethanol permeability at 5.5 × 10-6 L m m-2 h-1 bar-1 with 93% Rose Bengal (1017.6 g mol-1) rejection, drastically outperforming commercial and state-of-the-art membranes. These membranes can replace energy-intensive separation processes such as distillation, lowering operation costs in well-established pharmaceutical production processes.
Collapse
Affiliation(s)
- Xi Quan Cheng
- CSIRO , Private Bag 10, Clayton South, Victoria 3169, Australia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Converson and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, China
| | | | - Cara M Doherty
- CSIRO , Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Colin D Wood
- CSIRO , Australian Resources Research Centre, Kensington, Western Australia 6155, Australia
| | - Xavier Mulet
- CSIRO , Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Zongli Xie
- CSIRO , Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Derrick Ng
- CSIRO , Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Matthew R Hill
- CSIRO , Private Bag 10, Clayton South, Victoria 3169, Australia
- Department of Chemical Engineering, Monash University , Clayton Victoria 3800, Australia
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Converson and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, China
| | - Cher Hon Lau
- CSIRO , Private Bag 10, Clayton South, Victoria 3169, Australia
- Department of Chemical Engineering, University of Edinburgh , Edinburgh EH9 3JL, United Kingdom
| |
Collapse
|
32
|
Will ultra-high permeance membranes lead to ultra-efficient processes? Challenges for molecular separations in liquid systems. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
da Silva Burgal J, Peeva L, Livingston A. Negligible ageing in poly(ether-ether-ketone) membranes widens application range for solvent processing. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Yang S, Zhen H, Su B. Polyimide thin film composite (TFC) membranes via interfacial polymerization on hydrolyzed polyacrylonitrile support for solvent resistant nanofiltration. RSC Adv 2017. [DOI: 10.1039/c7ra08133b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High performance solvent resistant nanofiltration membranes are fabricated via interfacial polymerization between m-phenylenediamine and 1,2,4,5-benzenetetra acylchloride on hydrolyzed polyacrylonitrile supports followed by chemical imidization.
Collapse
Affiliation(s)
- Shanshan Yang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China)
- Ministry of Education
- Qingdao 266100
- China
- College of Chemistry & Chemical Engineering
| | - Hongyan Zhen
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China)
- Ministry of Education
- Qingdao 266100
- China
- College of Chemistry & Chemical Engineering
| | - Baowei Su
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China)
- Ministry of Education
- Qingdao 266100
- China
- College of Chemistry & Chemical Engineering
| |
Collapse
|
35
|
Volkov A, Bakhtin D, Kulikov L, Terenina M, Golubev G, Bondarenko G, Legkov S, Shandryuk G, Volkov V, Khotimskiy V, Belogorlov A, Maksimov A, Karakhanov E. Stabilization of gas transport properties of PTMSP with porous aromatic framework: Effect of annealing. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.06.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
|
37
|
Guo H, Ma Y, Qin Z, Gu Z, Cui S, Zhang G. One-Step Transformation from Hierarchical-Structured Superhydrophilic NF Membrane into Superhydrophobic OSN Membrane with Improved Antifouling Effect. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23379-23388. [PMID: 27537337 DOI: 10.1021/acsami.6b07106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The hierarchical-structured superhydrophilic poly(ethylenimine)/poly(acrylic acid) (PEI/PAA)calcium silicate hydrate (CSH) multilayered membranes (PEI/PAA-CSH)n were prepared as aqueous nanofiltration (NF) membrane, and then they were transformed into superhydrophobic organic solvent nanofiltration (OSN) membranes by one-step modification of trimethylperfluorinatedsilane (PFTS). Investigation on surface structures and properties of these multilayered membranes (PEI/PAA-CSH)n indicated that the hierarchical-structured (PEI/PAA-CSH)n multilayered membrane produced by in situ incorporation of CSH aggregates into PEI/PAA multilayers facilitated its one-step transformation from superhydrophilicity into superhydrophobicity. Both of the superwetting membranes showed better nanofiltration performances for retention of dyes of water and ethanol solution, respectively. Moreover, the long-term performance and antifouling behaviors, investigated by retention of methyl blue (MB), bovine serum albumin (BSA), and humic acid (HA) aqueous water solution and nonaqueous ethanol solution indicated that both of the superhydrophilic and superhydrophobic membrane showed higher stability and excellent antifouling property.
Collapse
Affiliation(s)
- Hongxia Guo
- College of Materials Science and Engineering, Beijing University of Technology , Beijing 100124, PR China
- Beijing Key Laboratory for Green Catalysis and Separation , Beijing 100124, PR China
| | - Yiwen Ma
- College of Materials Science and Engineering, Beijing University of Technology , Beijing 100124, PR China
| | - Zhenping Qin
- College of Environmental and Energy Engineering, Beijing University of Technology , Beijing 100124, PR China
- Beijing Key Laboratory for Green Catalysis and Separation , Beijing 100124, PR China
| | - Zhaoxiang Gu
- College of Materials Science and Engineering, Beijing University of Technology , Beijing 100124, PR China
| | - Suping Cui
- College of Materials Science and Engineering, Beijing University of Technology , Beijing 100124, PR China
| | - Guojun Zhang
- College of Environmental and Energy Engineering, Beijing University of Technology , Beijing 100124, PR China
| |
Collapse
|
38
|
A novel monoamine modification strategy toward high-performance organic solvent nanofiltration (OSN) membrane for sustainable molecular separations. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.09.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration. Adv Colloid Interface Sci 2015; 222:716-27. [PMID: 25482845 DOI: 10.1016/j.cis.2014.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/02/2014] [Accepted: 11/05/2014] [Indexed: 11/20/2022]
Abstract
For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed.
Collapse
|
40
|
Recent developments in thin film (nano)composite membranes for solvent resistant nanofiltration. Curr Opin Chem Eng 2015. [DOI: 10.1016/j.coche.2015.01.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Robust high-permeance PTMSP composite membranes for CO2 membrane gas desorption at elevated temperatures and pressures. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.056] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Marchetti P, Jimenez Solomon MF, Szekely G, Livingston AG. Molecular separation with organic solvent nanofiltration: a critical review. Chem Rev 2014; 114:10735-806. [PMID: 25333504 DOI: 10.1021/cr500006j] [Citation(s) in RCA: 855] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Patrizia Marchetti
- Department of Chemical Engineering and Chemical Technology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
43
|
Buonomenna MG, Bae J. Organic Solvent Nanofiltration in Pharmaceutical Industry. SEPARATION AND PURIFICATION REVIEWS 2014. [DOI: 10.1080/15422119.2014.918884] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Cheng XQ, Zhang YL, Wang ZX, Guo ZH, Bai YP, Shao L. Recent Advances in Polymeric Solvent-Resistant Nanofiltration Membranes. ADVANCES IN POLYMER TECHNOLOGY 2014. [DOI: 10.1002/adv.21455] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xi Quan Cheng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| | - Yong Ling Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
- AB InBev Sedrin (Zhangzhou) Brewery Co., Ltd; Zhang Zhou People's Republic of China
| | - Zhen Xing Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| | - Zhan Hu Guo
- Integrated Composites Laboratory; Dan F. Smith Department of Chemical Engineering; Lamar University; Beaumont Texas 77710
| | - Yong Ping Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| | - Lu Shao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| |
Collapse
|
45
|
Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.10.021] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Li J, Wang M, Huang Y, Luo B, Zhang Y, Yuan Q. Separation of binary solvent mixtures with solvent resistant nanofiltration membranes Part A: investigation of separation performance. RSC Adv 2014. [DOI: 10.1039/c4ra04222k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper is Part A of a two paper series seeking a systematical investigation of the feasibility of separating binary solvent mixtures with solvent resistant nanofiltration (SRNF) membranes.
Collapse
Affiliation(s)
- Jiandong Li
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Miaomiao Wang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Yucui Huang
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Beibei Luo
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Yuan Zhang
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| |
Collapse
|
47
|
Stawikowska J, Jimenez-Solomon MF, Bhole Y, Livingston AG. Nanoparticle contrast agents to elucidate the structure of thin film composite nanofiltration membranes. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Volkov A, Yushkin A, Grekhov A, Shutova A, Bazhenov S, Tsarkov S, Khotimsky V, Vlugt TJ, Volkov V. Liquid permeation through PTMSP: One polymer for two different membrane applications. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.03.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: Preparation, characterization and performance in dye removal. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.02.031] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
|