1
|
Liu X, Cheng M, Zhao Y, Qiu Y. Theoretical Studies on the Chemical Degradation and Proton Dissociation Property of PBI used in High-Temperature Polymer Electrolyte Membrane Fuel Cells. J Phys Chem B 2024; 128:6167-6177. [PMID: 38877610 DOI: 10.1021/acs.jpcb.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) are gaining more and more attention due to their higher efficiency than low-temperature ones. Polybenzimidazole (PBI) membranes are the most popular membranes used in HT-PEMFCs. However, their chemical stability and chemical degradation mechanisms, which directly affect the lifetime of fuel cells, have been hardly reported. We applied the density functional theory and used ABPBI as an example membrane to investigate the chemical degradation mechanisms of PBI membranes. The possible degradation mechanisms that occurred on eight sites have been proposed, where sites 2 and 3 located on the phenyl ring are determined as two weak sites toward OH radical and oxygen molecule attack. When the terminal is the H atom at site 7, it is also weak under OH radical attack. Regarding these, the substituent effect on the chemical stability of polymers has been studied. By introducing four -C2F5 or -CN groups, the barrier heights of the corresponding degradation reactions are increased; thus, the chemical stabilities of related membranes are improved. The selection of terminal atoms was also explored for alleviating the chemical degradation of the membrane. The investigated proton transfer properties of nine model compounds revealed that introducing four -C2F5 or -CN groups improves the proton dissociation properties occurring at the cathode. The increase of phosphoric acid concentration is helpful for the proton transfer at both the membrane and the cathode. This work may hopefully help the design and synthesis of HT-PEMFCs with good stability and high efficiency.
Collapse
Affiliation(s)
- Xitong Liu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Mengyuan Cheng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yuanyuan Zhao
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongqing Qiu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Song J, Zhao W, Zhou L, Meng H, Wang H, Guan P, Li M, Zou Y, Feng W, Zhang M, Zhu L, He P, Liu F, Zhang Y. Rational Materials and Structure Design for Improving the Performance and Durability of High Temperature Proton Exchange Membranes (HT-PEMs). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303969. [PMID: 37653601 PMCID: PMC10602569 DOI: 10.1002/advs.202303969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Hydrogen energy as the next-generation clean energy carrier has attracted the attention of both academic and industrial fields. A key limit in the current stage is the operation temperature of hydrogen fuel cells, which lies in the slow development of high-temperature and high-efficiency proton exchange membranes. Currently, much research effort has been devoted to this field, and very innovative material systems have been developed. The authors think it is the right time to make a short summary of the high-temperature proton exchange membranes (HT-PEMs), the fundamentals, and developments, which can help the researchers to clearly and efficiently gain the key information. In this paper, the development of key materials and optimization strategies, the degradation mechanism and possible solutions, and the most common morphology characterization techniques as well as correlations between morphology and overall properties have been systematically summarized.
Collapse
Affiliation(s)
- Jingnan Song
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Wutong Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Libo Zhou
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Hongjie Meng
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Haibo Wang
- Shanghai Maxim Fuel Cell Technology CompanyShanghai201401P. R. China
| | - Panpan Guan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Min Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials CompanyZiboShandong256401P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials CompanyZiboShandong256401P. R. China
| | - Ming Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Ping He
- Shanghai Maxim Fuel Cell Technology CompanyShanghai201401P. R. China
| | - Feng Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yongming Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
3
|
Liu W, Chen S, Li W, Liu X, Fu J, Zhang J, Wang H, Lu S, Xiang Y. A molecular dynamics study on polybenzimidazole based proton exchange membrane with dual proton conductors. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Qu E, Xiao M, Han D, Huang S, Huang Z, Liu W, Wang S, Meng Y. A Novel High Temperature Fuel Cell Proton Exchange Membrane with Nanoscale Phase Separation Structure Based on Crosslinked Polybenzimidazole with Poly(vinylbenzyl chloride). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:266. [PMID: 36678019 PMCID: PMC9863899 DOI: 10.3390/nano13020266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
A semi-aromatic polybenzimidazole (DPBI) is synthesized via polycondensation of decanedioic acid (DCDA) and 3,3-diaminobenzidine (DAB) in a mixed phosphorus pentoxide/methanesulfonic acid (PPMA) solvent. Ascribing to in-situ macromolecular crosslinker of ploly((vinylbenzyl chloride) (PVBC), a robust crosslinked DPBI membrane (DPBI-xPVBC, x refers to the weight percentage of PVBC in the membrane) can be obtained. Comprehensive properties of the DPBI and DPBI-xPVBC membranes are investigated, including chemical structure, antioxidant stability, mechanical strength, PA uptake and electrochemical performances. Compared with pristine DPBI membrane, the PA doped DPBI-xPVBC membranes exhibit excellent antioxidative stability, high proton conductivity and enhanced mechanical strength. The PA doped DPBI-10PVBC membrane shows a proton conductivity of 49 mS cm-1 at 160 °C without humidification. Particularly, it reveals an enhanced H2/O2 single cell performance with the maximum peak power density of 405 mW cm-2, which is 29% higher than that of pristine DPBI membrane (314 mW cm-2). In addition, the cell is very stable in 50 h, indicating the in-situ crosslinked DPBI with a macromolecular crosslinker of PVBC is an efficient way to improve the overall performance of HT-PEMs for high performance HT-PEMFCs.
Collapse
Affiliation(s)
- Erli Qu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, China
| | - Sheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, China
- Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
| |
Collapse
|
5
|
Ghorai A, Banerjee S. Phosphorus-Containing Aromatic Polymers: Synthesis, Structure, Properties and Membrane-Based Applications. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Zakaria Z, Kamarudin SK, Wahid KAA. Polymer electrolyte membrane modification in direct ethanol fuel cells: An update. J Appl Polym Sci 2022. [DOI: 10.1002/app.53383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zulfirdaus Zakaria
- School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, Engineering Campus Pulau Pinang Malaysia
- Fuel Cell Institute Universiti Kebangsaan Malaysia Bangi Selangor Malaysia
| | - Siti Kartom Kamarudin
- Fuel Cell Institute Universiti Kebangsaan Malaysia Bangi Selangor Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia Bangi Selangor Malaysia
| | - Khairul Anwar Abd Wahid
- Mechanical Engineering Section, Malaysia France Institute Universiti Kuala Lumpur Bandar Baru Bangi Malaysia
| |
Collapse
|
7
|
Guo X, Xu B, Ma Z, Li Y, Li D. Performance Analysis Based on Sustainability Exergy Indicators of High-Temperature Proton Exchange Membrane Fuel Cell. Int J Mol Sci 2022; 23:ijms231710111. [PMID: 36077509 PMCID: PMC9456530 DOI: 10.3390/ijms231710111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Based on finite-time thermodynamics, an irreversible high-temperature proton exchange membrane fuel cell (HT-PEMFC) model is developed, and the mathematical expressions of exergy efficiency, exergy destruction index (EDI), and exergy sustainability indicators (ESI) of HT-PEMFC are derived. According to HT-PEMFC model, the influences of thermodynamic irreversibility on exergy sustainability of HT-PEMFC are researched under different operating parameters that include operating temperatures, inlet pressure, and current density. The results show that the higher operating temperature and inlet pressure of HT-PEMFCs is beneficial to performance improvement. In addition, the single cell performance gradually decreases with increasing current density due to the presence of the irreversibility of HT-PEMFC.
Collapse
Affiliation(s)
| | | | - Zheshu Ma
- Correspondence: ; Tel.: +86-137-7665-9269
| | | | | |
Collapse
|
8
|
Maiti TK, Singh J, Majhi J, Ahuja A, Maiti S, Dixit P, Bhushan S, Bandyopadhyay A, Chattopadhyay S. Advances in polybenzimidazole based membranes for fuel cell applications that overcome Nafion membranes constraints. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Novel polymeric additives in the preparation and modification of polymeric membranes: A comprehensive review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Exergetic Performance Coefficient Analysis and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell. MEMBRANES 2022; 12:membranes12010070. [PMID: 35054596 PMCID: PMC8781780 DOI: 10.3390/membranes12010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 01/27/2023]
Abstract
Performance of a high-temperature proton exchange membrane fuel cell (HT-PEMFC) and the influence of different parameters on HT-PEMFC is analyzed in this study. Firstly, mathematical expression for energy efficiency, power density, exergy destruction and exergetic performance coefficient (EPC) are derived. Then, the relationship between the dimensionless power density, exergy destruction rate, exergetic performance coefficient (EPC) and energy efficiency is compared. Furthermore, the effect of flow rate, doping level, inlet pressure and film thickness are considered to evaluate the performance of HT-PEMFC. Results show that EPC not only considers exergetic loss rate to minimize exergetic loss, but also considers the power density of HT-PEMFC to maximize its power density and improve its efficiency, so EPC represents a better performance criterion. In addition, increasing inlet pressure and doping level can improve EPC and energy efficiency, respectively.
Collapse
|
11
|
Arslan F, Chuluunbandi K, Freiberg ATS, Kormanyos A, Sit F, Cherevko S, Kerres J, Thiele S, Böhm T. Performance of Quaternized Polybenzimidazole-Cross-Linked Poly(vinylbenzyl chloride) Membranes in HT-PEMFCs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56584-56596. [PMID: 34784464 DOI: 10.1021/acsami.1c17154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-temperature proton-exchange membrane fuel cells (HT-PEMFCs) are mostly based on acid-doped membranes composed of polybenzimidazole (PBI). A severe drawback of acid-doped membranes is the deterioration of mechanical properties upon increasing acid-doping levels. Cross-linking of different polymers is a way to mitigate stability issues. In this study, a new ion-pair-coordinated membrane (IPM) system with quaternary ammonium groups for the application in HT-PEMFCs is introduced. PBI cross-linked with poly(vinylbenzyl chloride) and quaternized with three amines (DABCO, quinuclidine, and quinuclidinol) are manufactured and compared to the state-of-the-art commercial Dapazol PBI membrane ex situ as well as by evaluating their HT-PEMFC performance. The IPMs show reduced swelling and better mechanical properties upon doping, which enables a reduction in membrane thickness while maintaining a comparably low gas crossover and mechanical stability. The HT-PEMFC based on the best-performing IPM reaches up to 530 mW cm-2 at 180 °C under H2/air conditions at ambient pressure, while Dapazol is limited to less than 430 mW cm-2 at equal parameters. This new IPM system requires less acid doping than conventional PBI membranes while outperforming conventional PBI membranes, which renders these new membranes promising candidates for application in HT-PEMFCs.
Collapse
Affiliation(s)
- Funda Arslan
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Khajidkhand Chuluunbandi
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Anna T S Freiberg
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Attila Kormanyos
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Ferit Sit
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jochen Kerres
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
- Faculty of Natural Science, North-West University, Potchefstroom 2520, South Africa
| | - Simon Thiele
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Thomas Böhm
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
12
|
Kim EK, Cho K, Lee H, Chung I, Lee JC. Solid electrolyte membranes based on polybenzimidazole containing graphitic carbon nitride moiety (PBICN) for high-temperature fuel cell applications. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Bender J, Mayerhöfer B, Trinke P, Bensmann B, Hanke-Rauschenbach R, Krajinovic K, Thiele S, Kerres J. H +-Conducting Aromatic Multiblock Copolymer and Blend Membranes and Their Application in PEM Electrolysis. Polymers (Basel) 2021; 13:polym13203467. [PMID: 34685226 PMCID: PMC8541206 DOI: 10.3390/polym13203467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/25/2022] Open
Abstract
As an alternative to common perfluorosulfonic acid-based polyelectrolytes, we present the synthesis and characterization of proton exchange membranes based on two different concepts: (i) Covalently bound multiblock-co-ionomers with a nanophase-separated structure exhibit tunable properties depending on hydrophilic and hydrophobic components’ ratios. Here, the blocks were synthesized individually via step-growth polycondensation from either partially fluorinated or sulfonated aromatic monomers. (ii) Ionically crosslinked blend membranes of partially fluorinated polybenzimidazole and pyridine side-chain-modified polysulfones combine the hydrophilic component’s high proton conductivities with high mechanical stability established by the hydrophobic components. In addition to the polymer synthesis, membrane preparation, and thorough characterization of the obtained materials, hydrogen permeability is determined using linear sweep voltammetry. Furthermore, initial in situ tests in a PEM electrolysis cell show promising cell performance, which can be increased by optimizing electrodes with regard to binders for the respective membrane material.
Collapse
Affiliation(s)
- Johannes Bender
- Institut für Chemische Verfahrenstechnik (ICVT), Universität Stuttgart, Boeblinger Str. 78, 70199 Stuttgart, Germany; (J.B.); (K.K.)
| | - Britta Mayerhöfer
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstr. 1, 91058 Erlangen, Germany; (B.M.); (S.T.)
| | - Patrick Trinke
- Institut für Elektrische Energiesysteme (IfES), Universität Hannover, 30167 Hannover, Germany; (P.T.); (B.B.); (R.H.-R.)
| | - Boris Bensmann
- Institut für Elektrische Energiesysteme (IfES), Universität Hannover, 30167 Hannover, Germany; (P.T.); (B.B.); (R.H.-R.)
| | - Richard Hanke-Rauschenbach
- Institut für Elektrische Energiesysteme (IfES), Universität Hannover, 30167 Hannover, Germany; (P.T.); (B.B.); (R.H.-R.)
| | - Katica Krajinovic
- Institut für Chemische Verfahrenstechnik (ICVT), Universität Stuttgart, Boeblinger Str. 78, 70199 Stuttgart, Germany; (J.B.); (K.K.)
| | - Simon Thiele
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstr. 1, 91058 Erlangen, Germany; (B.M.); (S.T.)
- Department Chemie- und Bioingenieurwesen, Friedrich-Alexander Universität Erlangen-Nürnberg, Immerwahrstr. 2a, 91058 Erlangen, Germany
| | - Jochen Kerres
- Institut für Chemische Verfahrenstechnik (ICVT), Universität Stuttgart, Boeblinger Str. 78, 70199 Stuttgart, Germany; (J.B.); (K.K.)
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstr. 1, 91058 Erlangen, Germany; (B.M.); (S.T.)
- Chemical Resource Beneficiation Faculty of Natural Sciences, North-West University, Potchefstroom 2520, South Africa
- Correspondence:
| |
Collapse
|
14
|
Berber MR, Rosa F, Iranzo A. Mechanically robust and highly conductive polymer electrolyte membranes comprising high molecular weight poly[2,2′-(bipyridyl)-bibenzimidazole] and graphene oxide. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Li Y, Ma Z, Zheng M, Li D, Lu Z, Xu B. Performance Analysis and Optimization of a High-Temperature PEMFC Vehicle Based on Particle Swarm Optimization Algorithm. MEMBRANES 2021; 11:membranes11090691. [PMID: 34564508 PMCID: PMC8466202 DOI: 10.3390/membranes11090691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/03/2022]
Abstract
In this paper, a high-temperature proton exchange membrane fuel cell (HT-PEMFC) model using the polybenzimidazole membrane doped with phosphoric acid molecules is developed based on finite time thermodynamics, considering various polarization losses and losses caused by leakage current. The mathematical expressions of the output power density and efficiency of the HT-PEMFC are deduced. The reliability of the model is verified by the experimental data. The effects of operating parameters and design parameters on the output performance of the HT-PEMFC are further analyzed. The particle swarm optimization (PSO) algorithm is used for the multi-objective optimization of the power density and efficiency of the HT-PEMFC. The results show that the output performance of the optimized HT-PEMFC is improved. Then, according to the different output performance of the low-temperature proton exchange membrane fuel cell (LT-PEMFC), HT-PEMFC, and optimized HT-PEMFC, different design schemes are provided for a fuel cell vehicle (FCV) powertrain. Simulation tests are conducted under different driving cycles, and the results show that the FCV with the optimized HT-PEMFC is more efficient and consumes less hydrogen.
Collapse
Affiliation(s)
| | - Zheshu Ma
- Correspondence: ; Tel.: +86-137-7665-9269
| | | | | | | | | |
Collapse
|
16
|
Achieving high power density and excellent durability for high temperature proton exchange membrane fuel cells based on crosslinked branched polybenzimidazole and metal-organic frameworks. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119288] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Ecological Performance Optimization of a High Temperature Proton Exchange Membrane Fuel Cell. MATHEMATICS 2021. [DOI: 10.3390/math9121332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
According to finite-time thermodynamics, an irreversible high temperature proton exchange membrane fuel cell (HT-PEMFC) model is established, and the mathematical expressions of the output power, energy efficiency, exergy efficiency and ecological coefficient of performance (ECOP) of HT-PEMFC are deduced. The ECOP is a step forward in optimizing the relationship between power and power dissipation, which is more in line with the principle of ecology. Based on the established HT-PEMFC model, the maximum power density is obtained under different parameters that include operating temperature, operating pressure, phosphoric acid doping level and relative humidity. At the same time, the energy efficiency, exergy efficiency and ECOP corresponding to the maximum power density are acquired so as to determine the optimal value of each index under the maximum power density. The results show that the higher the operating temperature and the doping level, the better the performance of HT-PEMFC is. However, the increase of operating pressure and relative humidity has little effect on HT-PEMFC performance.
Collapse
|
18
|
Arslan F, Böhm T, Kerres J, Thiele S. Spatially and temporally resolved monitoring of doping polybenzimidazole membranes with phosphoric acid. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Preparation and investigation on the low temperature proton exchange membranes with the enhanced proton conductivity at subzero temperature. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Jheng LC, Rosidah AA, Hsu SLC, Ho KS, Pan CJ, Cheng CW. Nanocomposite membranes of polybenzimidazole and amine-functionalized carbon nanofibers for high temperature proton exchange membrane fuel cells. RSC Adv 2021; 11:9964-9976. [PMID: 35423528 PMCID: PMC8695395 DOI: 10.1039/d0ra09972d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Carbon nanofibers functionalized with aminobenzoyl groups (CNF–aminobenzoyl) were prepared via direct Friedel–Crafts acylation in polyphosphoric acid. The functionalization of CNFs was characterized using XPS, FTIR, TGA, and Raman analyses. Hexafluoroisopropylidene-containing polybenzimidazole (6FPBI) composite membranes containing pristine CNFs or CNF–aminobenzoyl were prepared using solvent-assisted dispersion and solvent-casting methods. In this work, the influence of the incorporation of functionalized CNFs on several physicochemical properties of the 6FPBI nanocomposite membranes, including their thermal stability, mechanical strength, and acid doping level, was studied. The results showed that CNF–aminobenzoyl provided better mechanical reinforcement for the nanocomposite membrane, compared to pristine CNF. The SEM observation confirmed the good compatibility between the CNF–aminobenzoyl fillers and the 6FPBI matrix. For the 0.3 wt% CNF–aminobenzoyl/6FPBI composite membrane, the tensile stress was increased by 12% to be 78.9 MPa (as compared to the 6FPBI membrane), the acid doping level was improved to 12.0, and the proton conductivity at 160 °C was measured above 0.2 S cm−1. Furthermore, the fuel cell performance of the membrane electrolyte assembly (MEA) for each nanocomposite membrane was evaluated. The maximum power density at 160 °C was found up to 461 mW cm−2 for the MEA based on the 0.3 wt% CNF–aminobenzoyl/6FPBI composite membrane. Carbon nanofibers functionalized with aminobenzoyl groups (CNF–aminobenzoyl) were prepared via direct Friedel–Crafts acylation in polyphosphoric acid.![]()
Collapse
Affiliation(s)
- Li-Cheng Jheng
- Department of Chemical and Materials Engineering
- National Kaohsiung University of Science and Technology
- Kaohsiung
- Republic of China
| | - Afira Ainur Rosidah
- Department of Materials Science and Engineering
- National Cheng-Kung University
- Tainan
- Republic of China
| | - Steve Lien-Chung Hsu
- Department of Materials Science and Engineering
- National Cheng-Kung University
- Tainan
- Republic of China
| | - Ko-Shan Ho
- Department of Chemical and Materials Engineering
- National Kaohsiung University of Science and Technology
- Kaohsiung
- Republic of China
| | - Chun-Jern Pan
- Department of Chemical and Materials Engineering
- National Kaohsiung University of Science and Technology
- Kaohsiung
- Republic of China
| | - Cheng-Wei Cheng
- Department of Materials Science and Engineering
- National Cheng-Kung University
- Tainan
- Republic of China
| |
Collapse
|
21
|
Aili D, Henkensmeier D, Martin S, Singh B, Hu Y, Jensen JO, Cleemann LN, Li Q. Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress. ELECTROCHEM ENERGY R 2020. [DOI: 10.1007/s41918-020-00080-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Liu R, Liu M, Wu S, Che X, Dong J, Yang J. Assessing the influence of various imidazolium groups on the properties of poly(vinyl chloride) based high temperature proton exchange membranes. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Seo K, Nam KH, Han H. Proton Transport in Aluminum-Substituted Mesoporous Silica Channel-Embedded High-Temperature Anhydrous Proton-Exchange Membrane Fuel Cells. Sci Rep 2020; 10:10352. [PMID: 32587342 PMCID: PMC7316861 DOI: 10.1038/s41598-020-66935-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/29/2020] [Indexed: 11/28/2022] Open
Abstract
Polymer composite membrane technology is promising for enhancing the performance of membrane electrode assemblies for high-temperature fuel cells. In this study, we developed a novel anhydrous proton-exchange polybenzimidazole (m-PBI) composite membrane using Al-substituted mesoporous silica (Al-MCM-41) as a proton-carrier support. The surface-substituted Al-MCM-41 formed effective proton-transport pathways via its periodic hexagonal channel and improved the proton conductivity. The proton conductivity of an m-PBI filled with 9 wt.% filler was 0.356 S cm-1 at 160 °C and 0% humidity, representing an increase of 342% compared to that of a pristine m-PBI. Further, the current density at 0.6 V and maximum power density of m-PBI composite membranes were increased to 0.393 A cm-2 and 0.516 W cm-2, respectively. The enhanced fuel-cell performance was attributed to the proton-transfer channels and H3PO4 reservoirs formed by the mesopores of the Al-MCM-41 shell. The results indicated that Al-MCM-41 is suitable with respect to the hybrid homologues for enhancing the proton transport of the m-PBI membrane.
Collapse
Affiliation(s)
- Kwangwon Seo
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Ki-Ho Nam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Haksoo Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| |
Collapse
|
25
|
Jin J, Zhao J, Shen S, Yu J, Cheng S, Pan B, Che Q. Constructing anhydrous proton exchange membranes based on cadmium telluride nanocrystal-doped sulfonated poly(ether ether ketone)/polyurethane composites. NANOTECHNOLOGY 2020; 31:205707. [PMID: 32000158 DOI: 10.1088/1361-6528/ab71b5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cadmium telluride (CdTe) nanocrystals with thiol stabilizers have been applied widely in the fields of energy storage and transformation. The aim of this work is to develop anhydrous proton exchange membranes (PEMs) by introducing CdTe nanocrystals bearing thioglycolic acid (tga) or mercaptopropionic acid (mpa) stabilizers into sulfonated poly(ether ether ketone) (SPEEK) and polyurethane (PU) systems. In the prepared SPEEK/PU/CdTe membranes, CdTe nanocrystals could provide desirable properties such as improving mechanical strength and enhancing proton conductivity by combining with phosphoric acid (PA) molecules. Successful preparation of SPEEK/PU/CdTe/PA membranes was demonstrated by the identification of high and stable proton conductivity and satisfactory thermal/chemical stability and mechanical properties. The fine appearance of membranes revealed uniform dispersion of components. Measurements of properties showed that the SPEEK(74%)/PU/CdTe-mpa(20/60/20)/100%PA membrane as a candidate anhydrous PEM is promising for use in high-temperature proton exchange membrane fuel cells. Specifically, the recommended membrane showed a proton conductivity of 1.18 × 10-1 S cm-1 at 160 °C and 3.96 × 10-2 S cm-1 at 100 °C, lasting for 600 h, and a tensile stress of 14.6 MPa at room temperature. Mixing inorganic CdTe nanocrystals with polymers to form inorganic/organic composite membranes is effective for producing anhydrous PEMs with cheaper polymers without functional groups to conduct protons.
Collapse
Affiliation(s)
- Jin Jin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Rao SS, Hande VR, Sawant SM, Praveen S, Rath SK, Sudarshan K, Ratna D, Patri M. α-ZrP Nanoreinforcement Overcomes the Trade-Off between Phosphoric Acid Dopability and Thermomechanical Properties: Nanocomposite HTPEM with Stable Fuel Cell Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37013-37025. [PMID: 31513381 DOI: 10.1021/acsami.9b09405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent times, high-temperature polymer electrolyte membranes (HTPEMs) have emerged as viable alternatives to the Nafion-based low-temperature-operated polymer electrolyte membrane fuel cells. This is owing to their higher tolerance to fuel impurities, efficient water management, and higher cathode kinetics. However, the most efficacious HTPEMs such as poly(benzimidazole) (PBI) or 2,5-poly(benzimidazole) (ABPBI), which rely on the extent of phosphoric acid (PA) doping level for fuel cell performance, suffer from poor mechanical properties at higher acid doping levels and dopant leaching during continuous operation. To overcome these issues, we report the synthesis of ABPBI membranes and fabrication of ABPBI-zirconium pyrophosphate (α-ZrP)-based nanocomposite membranes by an ex situ methodology using methane sulfonic acid as the solvent. The incorporation of hydrophilic α-ZrP into the membrane resulted in higher dopability of PA (6.5 mol) and proton conductivity (46 mS/cm) of the membranes (10 wt % of α-ZrP) as against the corresponding values of 3.6 mol and 27 mS/cm, respectively, for the pristine membrane. More remarkably, these property improvements could be achieved while simultaneously augmenting the thermomechanical properties and oxidative stability of the membranes. The unit-cell tests showed a marked improvement in the maximum power density for the nanocomposite membrane (335 mW/cm2 at 10 wt % α-ZrP content) over the pristine ABPBI membrane (200 mW/cm2). We also report for the first time the feasibility of a 100 W HTPEM fuel cell (HTPEMFC) stack operated with the nanocomposite membrane with an active area of 39 cm2. The HTPEMFC stack delivered a stable voltage and power output, with a voltage drop rate of 0.84 μV/h over a run time of 730 h.
Collapse
Affiliation(s)
- Swati S Rao
- Polymer Division , Naval Materials Research Laboratory , Shil-Badlapur Road, Additional Ambernath , Thane 421506 , Maharashtra , India
| | - Varsha R Hande
- Polymer Division , Naval Materials Research Laboratory , Shil-Badlapur Road, Additional Ambernath , Thane 421506 , Maharashtra , India
| | - Shilpa M Sawant
- Polymer Division , Naval Materials Research Laboratory , Shil-Badlapur Road, Additional Ambernath , Thane 421506 , Maharashtra , India
| | - S Praveen
- Polymer Division , Naval Materials Research Laboratory , Shil-Badlapur Road, Additional Ambernath , Thane 421506 , Maharashtra , India
| | - Sangram K Rath
- Polymer Division , Naval Materials Research Laboratory , Shil-Badlapur Road, Additional Ambernath , Thane 421506 , Maharashtra , India
| | - Kathi Sudarshan
- Radiochemistry Division , Bhabha Atomic Research Centre , Mumbai 400085 , Maharashtra , India
| | - Debdatta Ratna
- Polymer Division , Naval Materials Research Laboratory , Shil-Badlapur Road, Additional Ambernath , Thane 421506 , Maharashtra , India
| | - Manoranjan Patri
- Polymer Division , Naval Materials Research Laboratory , Shil-Badlapur Road, Additional Ambernath , Thane 421506 , Maharashtra , India
| |
Collapse
|
27
|
Wang L, Liu Z, Liu Y, Wang L. Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Zhang Z, Su H, Tian C, Qi R, Wang X, Xia R. Mechanical responses in the length direction and thickness direction of quaternary 1,4‐diazabicyclo‐[2.2.2]‐octane polysulfone alkaline anion‐exchange fuel‐cell membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhennan Zhang
- Key Laboratory of Hydraulic Machinery Transients, Ministry of EducationWuhan University Wuhan 430072 China
- Hubei Key Laboratory of Waterjet Theory and New TechnologyWuhan University Wuhan 430072 China
| | - Huiyu Su
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan University Wuhan 430072 China
| | - Chenyao Tian
- Key Laboratory of Hydraulic Machinery Transients, Ministry of EducationWuhan University Wuhan 430072 China
- Hubei Key Laboratory of Waterjet Theory and New TechnologyWuhan University Wuhan 430072 China
| | - Rongrong Qi
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan University Wuhan 430072 China
| | - Xu Wang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and EnergyWuhan University Wuhan 430072 China
| | - Re Xia
- Key Laboratory of Hydraulic Machinery Transients, Ministry of EducationWuhan University Wuhan 430072 China
- Hubei Key Laboratory of Waterjet Theory and New TechnologyWuhan University Wuhan 430072 China
| |
Collapse
|
29
|
Satheesh Kumar B, Sana B, Unnikrishnan G, Jana T, Santhosh Kumar KS. Polybenzimidazole as proton conducting filler in polydimethylsiloxane: Enhanced oxidative stability and membrane properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.48151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- B. Satheesh Kumar
- Polymers and Special Chemicals DivisionVikram Sarabhai Space Centre Thiruvananthapuram India
| | | | | | - Tushar Jana
- School of ChemistryUniversity of Hyderabad Hyderabad India
| | - K. S. Santhosh Kumar
- Polymers and Special Chemicals DivisionVikram Sarabhai Space Centre Thiruvananthapuram India
| |
Collapse
|
30
|
Synthesis and Properties of Poly(imides) and Poly(imides)/Ionic Liquid Composites Bearing a Benzimidazole Moiety. Polymers (Basel) 2019; 11:polym11050759. [PMID: 31052323 PMCID: PMC6572087 DOI: 10.3390/polym11050759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 12/05/2022] Open
Abstract
Three new aromatic poly(imides) containing benzimidazole units in the backbone were synthesized and characterized by several spectroscopic techniques. Flexible spacer groups were incorporated into the poly(imides) structure to improve their solubility in organic solvents and their oxidative stabilization. All poly(imides) were thermally stable (Td5% > 512 °C) and had the ability to form dense flexible films. Novel composite films were successfully prepared by loading poly(imide) with ionic liquid ([Bmim]Br) at different concentrations up to 25 wt.%. The resulting materials were characterized according to their morphology and elemental composition (SEM-EDX), water uptake capability, contact angle, and oxidative degradation resistance. Results suggested that poly(imide)/ionic liquid composites would be excellent candidates for future proton conductivity measurements.
Collapse
|
31
|
Xu S, Adamski M, Killer M, Schibli EM, Frisken BJ, Holdcroft S. Sulfo-Phenylated Polyphenylenes Containing Sterically Hindered Pyridines. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Liu FH, Lin CX, Hu EN, Yang Q, Zhang QG, Zhu AM, Liu QL. Anion exchange membranes with well-developed conductive channels: Effect of the functional groups. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Krishnan NN, Lee S, Ghorpade RV, Konovalova A, Jang JH, Kim HJ, Han J, Henkensmeier D, Han H. Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Yin C, Li J, Zhou Y, Zhang H, Fang P, He C. Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14026-14035. [PMID: 29620850 DOI: 10.1021/acsami.8b01513] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Proton exchange membrane fuel cell (PEMFC) is one of the most promising green power sources, in which perfluorinated sulfonic acid ionomer-based membranes (e.g., Nafion) are widely used. However, the widespread application of PEMFCs is greatly limited by the sharp degradation in electrochemical properties of the proton exchange membranes under high temperature and low humidity conditions. In this work, the high-performance sulfonated carbon nanotubes/Nafion composite membranes (Su-CNTs/Nafion) for the PEMFCs were prepared and the mechanism of the microstructures on the macroscopic properties of membranes was intensively studied. Microstructure evolution in Nafion membranes during water uptake was investigated by positron annihilation lifetime spectroscopy, and results strongly showed that the Su-CNTs or CNTs in Nafion composite membranes significantly reinforced Nafion matrices, which influenced the development of ionic-water clusters in them. Proton conductivities in Su-CNTs/Nafion composite membranes were remarkably enhanced due to the mass formation of proton-conducting pathways (water channels) along the Su-CNTs. In particular, these pathways along Su-CNTs in Su-CNTs/Nafion membranes interconnected the isolated ionic-water clusters at low humidity and resulted in less tortuosity of the water channel network for proton transportation at high humidity. At a high temperature of 135 °C, Su-CNTs/Nafion membranes maintained high proton conductivity because the reinforcement of Su-CNTs on Nafion matrices reduced the evaporation of water molecules from membranes as well as the hydrophilic Su-CNTs were helpful for binding water molecules.
Collapse
Affiliation(s)
- Chongshan Yin
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| | - Jingjing Li
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| | - Yawei Zhou
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| | - Haining Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , China
| | - Pengfei Fang
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| | - Chunqing He
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
36
|
Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.09.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Giffin GA, Galbiati S, Walter M, Aniol K, Ellwein C, Kerres J, Zeis R. Interplay between structure and properties in acid-base blend PBI-based membranes for HT-PEM fuel cells. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. MATERIALS 2017; 10:ma10070687. [PMID: 28773045 PMCID: PMC5551730 DOI: 10.3390/ma10070687] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/22/2017] [Accepted: 06/14/2017] [Indexed: 11/17/2022]
Abstract
Polymer fuel cells operating above 100 °C (High Temperature Polymer Electrolyte Membrane Fuel Cells, HT-PEMFCs) have gained large interest for their application to automobiles. The HT-PEMFC devices are typically made of membranes with poly(benzimidazoles), although other polymers, such as sulphonated poly(ether ether ketones) and pyridine-based materials have been reported. In this critical review, we address the state-of-the-art of membrane fabrication and their properties. A large number of papers of uneven quality has appeared in the literature during the last few years, so this review is limited to works that are judged as significant. Emphasis is put on proton transport and the physico-chemical mechanisms of proton conductivity.
Collapse
|
39
|
Yang J, Gao L, Wang J, Xu Y, Liu C, He R. Strengthening Phosphoric Acid Doped Polybenzimidazole Membranes with Siloxane Networks for Using as High Temperature Proton Exchange Membranes. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jingshuai Yang
- Department of Chemistry; College of Sciences; Northeastern University; Shenyang 110819 China
| | - Liping Gao
- Department of Chemistry; College of Sciences; Northeastern University; Shenyang 110819 China
| | - Jin Wang
- Department of Chemistry; College of Sciences; Northeastern University; Shenyang 110819 China
| | - Yixin Xu
- Department of Chemistry; College of Sciences; Northeastern University; Shenyang 110819 China
| | - Chao Liu
- Department of Chemistry; College of Sciences; Northeastern University; Shenyang 110819 China
| | - Ronghuan He
- Department of Chemistry; College of Sciences; Northeastern University; Shenyang 110819 China
| |
Collapse
|
40
|
Melchior JP, Majer G, Kreuer KD. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells? Phys Chem Chem Phys 2017; 19:601-612. [DOI: 10.1039/c6cp05331a] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This 1H-NMR, 31P-NMR, thermo-gravimetrical analysis, and conductivity study elucidates how hygroscopicity, acidity, and proton transport of phosphoric acid are affected by acid–base interactions with (benz)imidazole present in proton conducting high-temperature PEM fuel cell membranes.
Collapse
Affiliation(s)
| | - Günter Majer
- Max-Planck-Institut für Intelligente Systeme
- Stuttgart
- Germany
| | | |
Collapse
|
41
|
Tkachenko IM, Kobzar YL, Yakovlev YV, Shekera OV, Klepko VV, Shevchenko VV. Synthesis of perfectly alternating and statistical meta-linked fluorinated poly(arylene ether) copolymers containing octafluorobiphenylene and trifluoromethyl units. Macromol Res 2016. [DOI: 10.1007/s13233-017-5012-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Aili D, Javakhishvili I, Han J, Jankova K, Pan C, Hvilsted S, Jensen JO, Bjerrum NJ, Li Q. Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytes. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David Aili
- Department of Energy Conversion and Storage; Technical University of Denmark; Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Irakli Javakhishvili
- Danish Polymer Centre; Department of Chemical and Biochemical Engineering; Technical University of Denmark; Søltofts Plads 227 2800 Kgs. Lyngby Denmark
| | - Junyoung Han
- Department of Energy Conversion and Storage; Technical University of Denmark; Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Katja Jankova
- Department of Energy Conversion and Storage; Technical University of Denmark; Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Chao Pan
- Department of Energy Conversion and Storage; Technical University of Denmark; Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Søren Hvilsted
- Danish Polymer Centre; Department of Chemical and Biochemical Engineering; Technical University of Denmark; Søltofts Plads 227 2800 Kgs. Lyngby Denmark
| | - Jens Oluf Jensen
- Department of Energy Conversion and Storage; Technical University of Denmark; Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Niels J. Bjerrum
- Department of Energy Conversion and Storage; Technical University of Denmark; Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Qingfeng Li
- Department of Energy Conversion and Storage; Technical University of Denmark; Kemitorvet 207 2800 Kgs. Lyngby Denmark
| |
Collapse
|
43
|
Crosslinked ethyl phosphoric acid grafted polybenzimidazole and polybenzimidazole blend membranes for high-temperature proton exchange membrane fuel cells. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-015-0911-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Li H, Shen C, Yin S, Li W. Preparation of polysiloxane phosphonic acid doped polybenzimidazole high-temperature proton-exchange membrane. J Appl Polym Sci 2015. [DOI: 10.1002/app.42956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huilin Li
- Department of Polymer Materials and Engineering, School of Material Science and Engineering; Wuhan University of Technology; 122 Luoshi Road Wuhan 430070 People's Republic of China
| | - Chunhui Shen
- Department of Polymer Materials and Engineering, School of Material Science and Engineering; Wuhan University of Technology; 122 Luoshi Road Wuhan 430070 People's Republic of China
| | - Shanshan Yin
- Department of Polymer Materials and Engineering, School of Material Science and Engineering; Wuhan University of Technology; 122 Luoshi Road Wuhan 430070 People's Republic of China
| | - Wei Li
- Department of Polymer Materials and Engineering, School of Material Science and Engineering; Wuhan University of Technology; 122 Luoshi Road Wuhan 430070 People's Republic of China
| |
Collapse
|
46
|
Ngamsantivongsa P, Lin HL, Leon Yu T. Properties and fuel cell applications of polybenzimidazole and ethyl phosphoric acid grafted polybenzimidazole blend membranes. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.04.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Niether C, Rau M, Cremers C, Jones D, Pinkwart K, Tübke J. Development of a novel experimental DEMS set-up for electrocatalyst characterization under working conditions of high temperature polymer electrolyte fuel cells. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Kerres JA. Design Concepts for Aromatic Ionomers and Ionomer Membranes to be Applied to Fuel Cells and Electrolysis. POLYM REV 2015. [DOI: 10.1080/15583724.2015.1011754] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Poly(amide-imide) bearing imidazole groups/sulfonated polyimide blends for low humidity and medium temperature proton exchange membranes. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0729-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.094] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|