1
|
Shi D, Liu T. Versatile Gas-Transfer Membrane in Water and Wastewater Treatment: Principles, Opportunities, and Challenges. ACS ENVIRONMENTAL AU 2025; 5:152-164. [PMID: 40125285 PMCID: PMC11926753 DOI: 10.1021/acsenvironau.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 03/25/2025]
Abstract
Technologies using liquid-transfer membranes, such as microfiltration, ultrafiltration, and reverse osmosis, have been widely applied in water and wastewater treatment. In the last few decades, gas-transfer membranes have been introduced in various fields to facilitate mass transfer, in which gaseous compounds permeate through membrane pores driven by gradients in chemical concentration or potential. A notable knowledge gap exists among researchers working on these emerging gas-transfer membranes as they approach this subject from different angles and areas of expertise (e.g., material science versus microbiology). This review explores the versatile applications of gas-transfer membranes in water and wastewater treatment, categorizing them into three primary types according to the function of membranes: water vapor transferring, gaseous reactant supplying, and gaseous compound extraction. For each type, the principles, evolution, and potential for further development were elaborated. Moreover, this review highlights the potential knowledge transfer between different fields, as insights from one type of gas-transfer membrane could potentially benefit another. Despite their technical innovations, these processes still face challenges in practical operation, such as membrane fouling and wetting. We advocate for research focusing on more practical and sustainable membranes and careful consideration of these emerging membrane technologies in specific scenarios. The current practicality and maturity of these emerging processes in water and wastewater treatment are described by the Technology Readiness Level (TRL) framework. Particularly, ongoing fundamental progress in membranes and engineering is expected to continue fueling the future development of these technologies.
Collapse
Affiliation(s)
- Danting Shi
- Department of Civil and Environmental
Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| | - Tao Liu
- Department of Civil and Environmental
Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| |
Collapse
|
2
|
Abeyratne WMLK, Bayat H, Munasinghe-Arachchige SP, Zhang Y, Brewer CE, Nirmalakhandan N. Feasibility of ammonium sulfate recovery from wastewater sludges: Hydrothermal liquefaction pathway vs. anaerobic digestion pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119075. [PMID: 37769474 DOI: 10.1016/j.jenvman.2023.119075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
This study evaluated two pathways to recover the nitrogen-content of wastewater sludges as ammonium sulfate (AmS) for use as fertilizer. The first pathway entails sludge stabilization by hydrothermal liquefaction (HTL) followed by recovery of AmS from the resulting aqueous product by gas permeable membrane (GPM) separation. The second one entails stabilization of the sludges by anaerobic digestion (AD) followed by recovery of AmS from the resulting centrate by GPM separation. A bench-scale GPM reactor is shown to be capable of recovering >90% of N in the feed. Recoveries of NH3-N in the HTL-pathway ranged 96-100% in 5.5-7.5 h at mass removal rates of 0.2-0.3 g N/day, yielding 3.3-6.0 g AmS/L of feed. Recoveries of 98% were noted in the AD-pathway in 4 h at mass removal rates of 0.06-0.97 g N/day and a yield of 1.7-2.1 g AmS/L of feed. Inductively coupled plasma optical emission spectrometer analysis confirmed that both pathways yielded AmS meeting the US EPA and European region guidelines for land application. The GPM reactor enabled higher nitrogen-recoveries in the HTL-pathway than those reported for current practice of AD followed by ammonia stripping, ion exchange, reverse osmosis, and/or struvite precipitation (96-100% vs. 50-90%). A process model for the GPM reactor is validated using performance data on three different feedstocks.
Collapse
Affiliation(s)
- W M L K Abeyratne
- Dept. of Civil Engineering New Mexico State University, Las Cruces, NM, 88003, USA
| | - H Bayat
- Dept. of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Y Zhang
- Dept. of Civil Engineering New Mexico State University, Las Cruces, NM, 88003, USA
| | - C E Brewer
- Dept. of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - N Nirmalakhandan
- Dept. of Civil Engineering New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
3
|
Zhang J, Li K, Xie M, Han Q, Feng L, Qu D, Zhang L, Wang K. A new insight into the low membrane fouling tendency of liquid-liquid hollow fiber membrane contactor capturing ammonia from human urine. WATER RESEARCH 2023; 233:119795. [PMID: 36871380 DOI: 10.1016/j.watres.2023.119795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
To unravel the low membrane fouling tendency and underlying membrane fouling mechanism of liquid-liquid hollow fiber membrane contactor (LL-HFMC) capturing ammonia from human urine, the ammonia flux decline trend, membrane fouling propensity, foulant-membrane thermodynamic interaction energy and microscale force analysis at different feed urine pH were comprehensively investigated. The 21-d continuous experiments showed that the ammonia flux decline trend and membrane fouling propensity significantly strengthened with the decrease of feed urine pH. The calculated foulant-membrane thermodynamic interaction energy decreased with the decreasing feed urine pH and agreed with the ammonia flux decline trend and membrane fouling propensity. The microscale force analysis showed that the absence of hydrodynamic water permeate drag force resulted in the foulant located at long distance from the membrane were difficult to approach the membrane surface, thus considerably alleviating membrane fouling. Additionally, the vital thermodynamic attractive force near the membrane surface increased with the decrease of feed urine pH, which made the membrane fouling further relieved at high pH condition. Therefore, the absence of water permeate drag force and operating at high pH condition minimized the membrane fouling during the LL-HFMC ammonia capture process. The obtained results provide a new insight into the low membrane tendency mechanism of LL-HFMC.
Collapse
Affiliation(s)
- Junhui Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Mengfei Xie
- Jinan Environmental Research Academy, 25th Floor, Xinsheng Building, 1299 Xinluo Street, Lixia District, Jinan, Shandong, 250014, China
| | - Qi Han
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Ke Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| |
Collapse
|
4
|
Ammonia recovery from natural rubber processing wastewater by hollow fiber membrane contactors: Mass transfer in short- and long-term operations and fouling characteristics. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
5
|
Ammonia removal using thermally induced phase separation PVDF hollow fibre membrane contactors. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Red Seaweed (Gracilaria verrucosa Greville) Based Polyurethane as Adsorptive Membrane for Ammonia Removal in Water. Polymers (Basel) 2022; 14:polym14081572. [PMID: 35458322 PMCID: PMC9026328 DOI: 10.3390/polym14081572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
Polyurethane membranes are widely developed polymers by researchers because they can be made from synthetic materials or natural materials. Red seaweed (Gracilaria verrucosa Greville) is a natural material that can be developed as a raw material for polyurethane membranes. This study used red seaweed biomass (RSB) as a raw material to manufacture polyurethane as an adsorptive membrane for removing ammonia in water. The membrane composition was determined using the Box–Behnken design from Response Surface Methodology with three factors and three levels. In the ammonia adsorption process, the adsorption isotherm was determined by varying the concentration, while the adsorption kinetics was determined by varying the contact time. Red seaweed biomass-based polyurethane membrane (PUM-RSB) can adsorb ammonia in water with an adsorption capacity of 0.233 mg/g and an adsorption efficiency of 16.2%. The adsorption efficiency followed the quadratic model in the Box–Behnken design, which resulted in the optimal composition of RSB 0.15 g, TDI 3.0 g, and glycerin 0.4 g with predicted and actual adsorption capacities of 0.224 mg/g and 0.226 mg/g. The ammonia adsorption isotherm using PUM-RSB follows the Freundlich isotherm, with a high correlation coefficient (R2) of 0.977, while the Langmuir isotherm has a low R2 value of 0.926. The Freundlich isotherm indicates that ammonia is adsorbed on the surface of the adsorbent as multilayer adsorption. In addition, based on the analysis of adsorption kinetics, the adsorption phenomenon follows pseudo-order II with a chemisorption mechanism, and it is assumed that the bond that occurs is between the anion –SO42− with the NH4+ cation to form ammonium sulfate (NH4)2SO4 and between isocyanates (NCO) with NH4+ cations to form substituted urea.
Collapse
|
7
|
Sheikh M, Reig M, Vecino X, Lopez J, Rezakazemi M, Valderrama C, Cortina J. Liquid–Liquid membrane contactors incorporating surface skin asymmetric hollow fibres of poly(4-methyl-1-pentene) for ammonium recovery as liquid fertilisers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Zhang J, Xie M, Yang D, Tong X, Qu D, Feng L, Zhang L. The design of multi-stage open-loop hollow fiber membrane contactor and its application in ammonia capture from hydrolyzed human urine. WATER RESEARCH 2021; 207:117811. [PMID: 34763277 DOI: 10.1016/j.watres.2021.117811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Hollow fiber membrane contactor (HFMC) is a promising technology for removing or recovering wastewaters' volatile components. Developing a rational design method is very important for guiding its further application. In this study, we proposed a method to design the multi-stage open-loop hollow fiber membrane contactor (HFMC) employing shell-side influent. In addition, a three-stage HFMC was designed to capture ammonia from real hydrolyzed human urine. A continuous 1344 h performance was conducted. The results showed that the experimental effluent total ammonium nitrogen (TAN) concentration and ammonia mass transfer coefficient matched the predicted results well, which indicated that the design method was feasible and accurate. The three-stage HFMC showed excellent ammonia capture capacity with a TAN recovery efficiency of 93.29%, and the final effluent TAN concentration was 30.98±14.70 mg/L which met our design requirement (lower than 50 mg/L). More than 98.92% of the inorganic ions and 96.85% of the organic matter were retained in the effluent. The stripping solution after ammonia capture was the high-purity ammonium sulfate solution with low concentration of small molecular weight hydrophilic organic substances. The inorganic and organic membrane fouling was mild and randomly distributed. The inorganic membrane fouling was attributed to the deposition of calcium-, magnesium-, phosphate-related inorganic compounds, while the organic membrane fouling was mainly protein and carbohydrate. After the ammonia capture process, the surface hydrophobicity and pore properties of the membranes had no significant changes. These results demonstrated that the multi-stage open-loop HFMC could be a potential alternative for ammonia recovery from the high concentration of ammonium nitrogen wastewater.
Collapse
Affiliation(s)
- Junhui Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Mengfei Xie
- Jinan Environmental Research Academy, 25th Floor, Xinsheng Building, 1299 Xinluo Street, Lixia District, Jinan, Shandong, 250014, China
| | - Dandan Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Xin Tong
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30308, United States
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
9
|
Pang H, Tian K, Li Y, Su C, Duan F, Xu Y. Super-hydrophobic PTFE hollow fiber membrane fabricated by electrospinning of Pullulan/PTFE emulsion for membrane deamination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Yu S, Qin Y, Zhao Q, Li M, Yu H, Kang G, Cao Y. Nafion-PTFE hollow fiber composite membranes for ammonia removal and recovery using an aqueous-organic membrane contactor. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Nurman S, Saiful S, Ginting B, Rahmi R, Marlina M, Wibisono Y. Synthesis of Polyurethane Membranes Derived from Red Seaweed Biomass for Ammonia Filtration. MEMBRANES 2021; 11:membranes11090668. [PMID: 34564485 PMCID: PMC8470907 DOI: 10.3390/membranes11090668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
The development of membrane technology is rapidly increasing due to its numerous advantages, including its ease of use, chemical resistant properties, reduced energy consumption, and limited need for chemical additives. Polyurethane membranes (PUM) are a particular type of membrane filter, synthesized using natural organic materials containing hydroxy (-OH) groups, which can be used for water filtration, e.g., ammonia removal. Red seaweed (Rhodophyta) has specific molecules which could be used for PUM. This study aimed to ascertain PUM synthesis from red seaweed biomass (PUM-RSB) by using toluene diisocyanate via the phase inversion method. Red seaweed biomass with a particle size of 777.3 nm was used as starting material containing abundant hydroxy groups visible in the FTIR spectrum. The PUM-RSB produced was elastic, dry, and sturdy. Thermal analysis of the membrane showed that the initial high degradation temperature was 290.71 °C, while the residue from the thermogravimetric analysis (TGA) analysis was 4.88%. The PUM-RSB section indicates the presence of cavities on the inside. The mechanical properties of the PUM-RSB have a stress value of 53.43 MPa and a nominal strain of 2.85%. In order to optimize the PUM-RSB synthesis, a Box–Behnken design of Response Surface Methodology was conducted and showed the value of RSB 0.176 g, TDI 3.000 g, and glycerin 0.200 g, resulting from the theoretical and experimental rejection factor, i.e., 31.3% and 23.9%, respectively.
Collapse
Affiliation(s)
- Salfauqi Nurman
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Department of Agricultural Industrial Engineering, Faculty of Agricultural Technology, Universitas Serambi Mekkah, Banda Aceh 23245, Indonesia
- Politeknik Pelayaran Malahayati, Aceh Besar 23381, Indonesia
| | - Saiful Saiful
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (B.G.); (R.R.); (M.M.)
- Correspondence:
| | - Binawati Ginting
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (B.G.); (R.R.); (M.M.)
| | - Rahmi Rahmi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (B.G.); (R.R.); (M.M.)
| | - Marlina Marlina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; (B.G.); (R.R.); (M.M.)
| | - Yusuf Wibisono
- Department of Bioprocess Engineering, Faculty of Agricultural Technology, Brawijaya University, Malang 65141, Indonesia;
| |
Collapse
|
12
|
Reig M, Vecino X, Gibert O, Valderrama C, Cortina J. Study of the operational parameters in the hollow fibre liquid-liquid membrane contactors process for ammonia valorisation as liquid fertiliser. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Robles Á, Aguado D, Barat R, Borrás L, Bouzas A, Giménez JB, Martí N, Ribes J, Ruano MV, Serralta J, Ferrer J, Seco A. New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. BIORESOURCE TECHNOLOGY 2020; 300:122673. [PMID: 31948770 DOI: 10.1016/j.biortech.2019.122673] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 05/26/2023]
Abstract
Nutrient recovery technologies are rapidly expanding due to the need for the appropriate recycling of key elements from waste resources in order to move towards a truly sustainable modern society based on the Circular Economy. Nutrient recycling is a promising strategy for reducing the depletion of non-renewable resources and the environmental impact linked to their extraction and manufacture. However, nutrient recovery technologies are not yet fully mature, as further research is needed to optimize process efficiency and enhance their commercial applicability. This paper reviews state-of-the-art of nutrient recovery, focusing on frontier technological advances and economic and environmental innovation perspectives. The potentials and limitations of different technologies are discussed, covering systems based on membranes, photosynthesis, crystallization and other physical and biological nutrient recovery systems (e.g. incineration, composting, stripping and absorption and enhanced biological phosphorus recovery).
Collapse
Affiliation(s)
- Ángel Robles
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain.
| | - Daniel Aguado
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Ramón Barat
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Luis Borrás
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Alberto Bouzas
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Juan Bautista Giménez
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Nuria Martí
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Josep Ribes
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - María Victoria Ruano
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| | - Joaquín Serralta
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - José Ferrer
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Aurora Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
14
|
Yan H, Wu L, Wang Y, Shehzad MA, Xu T. Ammonia capture by water splitting and hollow fiber extraction. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.07.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Yu H, Thé J, Tan Z, Feng X. Modeling SO2 absorption into water accompanied with reversible reaction in a hollow fiber membrane contactor. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Liu H, Wang J. Separation of ammonia from radioactive wastewater by hydrophobic membrane contactor. PROGRESS IN NUCLEAR ENERGY 2016. [DOI: 10.1016/j.pnucene.2015.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Agrahari GK, Pandey N, Verma N, Bhattacharya PK. Membrane contactor for reactive extraction of succinic acid from aqueous solution by tertiary amine. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Pabby AK, Sastre AM. State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.11.060] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|