1
|
Sondhi H, Chen M, Nijboer MP, Nijmeijer A, Roozeboom F, Bechelany M, Kovalgin A, Luiten-Olieman M. Ceramic Nanofiltration Membranes: Creating Nanopores by Calcination of Atmospheric-Pressure Molecular Layer Deposition Grown Titanicone Layers. MEMBRANES 2025; 15:86. [PMID: 40137038 PMCID: PMC11943934 DOI: 10.3390/membranes15030086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Ceramic membrane technology, whether applied as a stand-alone separation technology or in combination with energy-intensive approaches like distillation, is a promising solution for lower energy alternatives with minimal carbon footprints. To improve the separation of solutes in the nanofiltration range from industrial wastewater streams, ceramic nanofiltration (NF) membranes with reproducible sub-nanometre pore sizes are required. To achieve this, the emerging technique of molecular layer deposition (MLD) is employed to develop ceramic NF membranes, and its efficiency and versatility make it a powerful tool for preparing uniform nanoscale high-porosity membranes. Our work, which involved vapor-phase titanium tetrachloride as a precursor and ethylene glycol as a co-reactant, followed by calcination in air at 350 °C, resulted in NF membranes with pore sizes (radii) around ~0.8 ± 0.1 nm and a demineralized water permeability of 13 ± 1 L·m-2·h-1·bar-1.The high-water flux with >90% rejection of polyethylene glycol molecules with a molecular size larger than 380 ± 6 Dalton indicates the efficiency of the MLD technique in membrane functionalization and size-selective separation processes, and its potential for industrial applications.
Collapse
Affiliation(s)
- Harpreet Sondhi
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| | - Mingliang Chen
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| | - Michiel Pieter Nijboer
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| | - Arian Nijmeijer
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| | - Fred Roozeboom
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), École Nationale Supérieure de Chimie de Montpellier, Centre National de la Recherche Scientifique, Place Eugène Bataillon, UMR-5635 Université Montpellier, 34095 Montpellier, France;
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Alexey Kovalgin
- Integrated Devices and Systems, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Mieke Luiten-Olieman
- Inorganic Membranes, University of Twente, 7500 AE Enschede, The Netherlands; (H.S.); (M.C.); (M.P.N.); (A.N.); (F.R.)
| |
Collapse
|
2
|
Naseer D, Ha JH, Lee J, Lee HJ, Song IH. High-Performance γ-Al 2O 3 Multichannel Tube-Type Tight Ultrafiltration Membrane Using a Modified Sol-Gel Method. MEMBRANES 2023; 13:405. [PMID: 37103832 PMCID: PMC10142786 DOI: 10.3390/membranes13040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
We introduced a modified sol-gel method using polyvinyl alcohol (PVA) as an additive to improve the permeability of γ-Al2O3 membranes by minimizing the thickness of the selective layer and maximizing the porosity. First, the analysis revealed that the thickness of γ-Al2O3 decreased as the concentration of PVA increased in the boehmite sol. Second, the properties of the γ-Al2O3 mesoporous membranes were greatly influenced by the modified route (method B) compared to the conventional route (method A). The results showed that the porosity and surface area of the γ-Al2O3 membrane increased, and the tortuosity decreased considerably using method B. This effect was attributed to the adsorption of PVA molecules on the surface of the boehmite particles, which depended on the synthesis route. The experimentally determined pure water permeability trend and the Hagen-Poiseuille mathematical model confirmed that the modified method improved the performance of the γ-Al2O3 membrane. Finally, the γ-Al2O3 membrane fabricated via a modified sol-gel method with a pore size of 2.7 nm (MWCO = 5300 Da) exhibited a pure water permeability of over 18 LMH/bar, which is three times higher than that of the γ-Al2O3 membrane prepared using the conventional method.
Collapse
Affiliation(s)
- Danyal Naseer
- Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Changwon-si 51508, Republic of Korea
- Department of Advanced Materials Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Jang-Hoon Ha
- Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Changwon-si 51508, Republic of Korea
| | - Jongman Lee
- Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Changwon-si 51508, Republic of Korea
- Department of Advanced Materials Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| | - Hong Joo Lee
- Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Changwon-si 51508, Republic of Korea
| | - In-Hyuck Song
- Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Changwon-si 51508, Republic of Korea
- Department of Advanced Materials Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Won GY, Park A, Yoo Y, Park YI, Lee JH, Kim IC, Cho YH, Park H. Improving the Separation Properties of Polybenzimidazole Membranes by Adding Acetonitrile for Organic Solvent Nanofiltration. MEMBRANES 2023; 13:104. [PMID: 36676911 PMCID: PMC9864663 DOI: 10.3390/membranes13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In research on membranes, the addition of co-solvents to the polymer dope solution is a common method for tuning the morphology and separation performance. For organic solvent nanofiltration (OSN) applications, we synthesized polybenzimidazole (PBI) membranes with high separation properties and stability by adding acetonitrile (MeCN) to the dope solution, followed by crosslinking with dibromo-p-xylene. Accordingly, changes in the membrane structure and separation properties were investigated when MeCN was added. PBI/MeCN membranes with a dense and thick active layer and narrow finger-like macrovoids exhibited superior rejection properties in the ethanol solution compared with the pristine PBI membrane. After crosslinking, they displayed superior rejection properties (96.56% rejection of 366-g/mol polypropylene glycol). In addition, the membranes demonstrated stable permeances for various organic solvents, including acetone, methanol, ethanol, toluene, and isopropyl alcohol. Furthermore, to evaluate the feasibility of the modified PBI OSN membranes, ecamsule, a chemical product in the fine chemical industry, was recovered. Correspondingly, the efficient recovery of ecamsule from a toluene/methanol solution using the OSN process with PBI/MeCN membranes demonstrated their applicability in many fine chemical industries.
Collapse
Affiliation(s)
- Ga Yeon Won
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ahrumi Park
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Youngmin Yoo
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - You-In Park
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - In-Chul Kim
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Young Hoon Cho
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hosik Park
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
An experimental and modeling investigation of the behaviors of solution in fluoropolymers hollow fiber membranes (HFMs). J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Organic solvent permeation characteristics of TiO2-ZrO2 composite nanofiltration membranes prepared using organic chelating ligand to control pore size and surface property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Determination of the key structural factors affecting permeability and selectivity of PAN and PES polymeric filtration membranes using 3D FIB/SEM. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yin Z, Aggarwal S, Yeow RJE, Kong L, Chew JW. Membrane filtration of dextran solutions with water and formamide as solvent. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1922447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ziqiang Yin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Siddharth Aggarwal
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Chemical Engineering Department, Indian Institute of Technology, Delhi, India
| | - Rique Jie En Yeow
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Lingxuan Kong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Membrane Technology Centre, Nanyang Environmental and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Quezada C, Estay H, Cassano A, Troncoso E, Ruby-Figueroa R. Prediction of Permeate Flux in Ultrafiltration Processes: A Review of Modeling Approaches. MEMBRANES 2021; 11:368. [PMID: 34070146 PMCID: PMC8158366 DOI: 10.3390/membranes11050368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/27/2021] [Accepted: 05/12/2021] [Indexed: 01/13/2023]
Abstract
In any membrane filtration, the prediction of permeate flux is critical to calculate the membrane surface required, which is an essential parameter for scaling-up, equipment sizing, and cost determination. For this reason, several models based on phenomenological or theoretical derivation (such as gel-polarization, osmotic pressure, resistance-in-series, and fouling models) and non-phenomenological models have been developed and widely used to describe the limiting phenomena as well as to predict the permeate flux. In general, the development of models or their modifications is done for a particular synthetic model solution and membrane system that shows a good capacity of prediction. However, in more complex matrices, such as fruit juices, those models might not have the same performance. In this context, the present work shows a review of different phenomenological and non-phenomenological models for permeate flux prediction in UF, and a comparison, between selected models, of the permeate flux predictive capacity. Selected models were tested with data from our previous work reported for three fruit juices (bergamot, kiwi, and pomegranate) processed in a cross-flow system for 10 h. The validation of each selected model's capacity of prediction was performed through a robust statistical examination, including a residual analysis. The results obtained, within the statistically validated models, showed that phenomenological models present a high variability of prediction (values of R-square in the range of 75.91-99.78%), Mean Absolute Percentage Error (MAPE) in the range of 3.14-51.69, and Root Mean Square Error (RMSE) in the range of 0.22-2.01 among the investigated juices. The non-phenomenological models showed a great capacity to predict permeate flux with R-squares higher than 97% and lower MAPE (0.25-2.03) and RMSE (3.74-28.91). Even though the estimated parameters have no physical meaning and do not shed light into the fundamental mechanistic principles that govern these processes, these results suggest that non-phenomenological models are a useful tool from a practical point of view to predict the permeate flux, under defined operating conditions, in membrane separation processes. However, the phenomenological models are still a proper tool for scaling-up and for an understanding the UF process.
Collapse
Affiliation(s)
- Carolina Quezada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
- Programa de Doctorado en Ciencia de Materiales e Ingeniería de Procesos (Doctoral Program in Materials Science and Process Engineering), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile
| | - Humberto Estay
- Advanced Mining Technology Center (AMTC), University of Chile, Av. Tupper 2007 (AMTC Building), Santiago 8370451, Chile;
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende, Italy;
| | - Elizabeth Troncoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
| | - René Ruby-Figueroa
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
| |
Collapse
|
9
|
|
10
|
Machine-based learning of predictive models in organic solvent nanofiltration: Solute rejection in pure and mixed solvents. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Goebel R, Skiborowski M. Machine-based learning of predictive models in organic solvent nanofiltration: Pure and mixed solvent flux. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
|
13
|
Nguyen TVN, Paugam L, Rabiller P, Rabiller-Baudry M. Study of transfer of alcohol (methanol, ethanol, isopropanol) during nanofiltration in water/alcohol mixtures. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Cao XL, Yan YN, Zhou FY, Sun SP. Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117476] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Abdellah M, Scholes C, Liu L, Kentish S. Efficient degumming of crude canola oil using ultrafiltration membranes and bio-derived solvents. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Effects of functionalization on the nanofiltration performance of PIM-1: Molecular simulation investigation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Molecular Simulation and Analysis of Sorption Process toward Theoretical Prediction for Liquid Permeation through Membranes. J Phys Chem B 2018; 122:12211-12218. [PMID: 30461276 DOI: 10.1021/acs.jpcb.8b09785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The need to understand and describe permeation through membranes has driven the development of many well-established transport models. The modeling parameters such as solubility, diffusivity, and permeability represent the intrinsic nature of molecular interactions between membrane and permeants. In this study, we report a simulation and analysis methodology for liquid permeation. On the basis of a single simulation of liquid sorption process into a membrane, the solubility and diffusivity are estimated simultaneously; then, the permeability is predicted by the solution-diffusion model. The methodology is applied to water permeation through two representative membranes: a polymer of intrinsic microporosity (PIM-1) and a zeolitic imidazolate framework (ZIF-96). For amorphous PIM-1 membrane, the predicted water permeability agrees perfectly with simulation. For crystalline ZIF-96 membrane, water permeability is fairly well predicted. Furthermore, water dynamics in the membranes is analyzed by simulation trajectories and water structure is characterized by hydrogen bonds. Together with these microscopic insights, this study provides a simple theoretical approach to quantitatively describe water sorption, diffusion, and permeation, and it can be further applied to other liquid permeation (e.g., organic solvent nanofiltration).
Collapse
|
18
|
Transport of terpenes through composite PDMS/PAN solvent resistant nanofiltration membranes. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
|
20
|
Marchetti P, Peeva L, Livingston A. The Selectivity Challenge in Organic Solvent Nanofiltration: Membrane and Process Solutions. Annu Rev Chem Biomol Eng 2017; 8:473-497. [PMID: 28511021 DOI: 10.1146/annurev-chembioeng-060816-101325] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent development of organic solvent nanofiltration (OSN) materials has been overwhelmingly directed toward tight membranes with ultrahigh permeance. However, emerging research into OSN applications is suggesting that improved separation selectivity is at least as important as further increases in membrane permeance. Membrane solutions are being proposed to improve selectivity, mostly by exploiting solute/solvent/membrane interactions and by fabricating tailored membranes. Because achieving a perfect separation with a single membrane stage is difficult, process engineering solutions, such as membrane cascades, are also being advocated. Here we review these approaches to the selectivity challenge, and to clarify our analysis, we propose a selectivity figure of merit that is based on the permselectivity between the two solutes undergoing separation as well as the ratio of their molecular weights.
Collapse
Affiliation(s)
- Patrizia Marchetti
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom; , ,
| | - Ludmila Peeva
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom; , ,
| | - Andrew Livingston
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, United Kingdom; , ,
| |
Collapse
|
21
|
Hosseinabadi SR, Wyns K, Meynen V, Buekenhoudt A, Van der Bruggen B. Solvent-membrane-solute interactions in organic solvent nanofiltration (OSN) for Grignard functionalised ceramic membranes: Explanation via Spiegler-Kedem theory. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.04.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
|
23
|
Song Z, Fathizadeh M, Huang Y, Chu KH, Yoon Y, Wang L, Xu WL, Yu M. TiO2 nanofiltration membranes prepared by molecular layer deposition for water purification. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Hosseinabadi SR, Wyns K, Buekenhoudt A, Van der Bruggen B, Ormerod D. Performance of Grignard functionalized ceramic nanofiltration membranes. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.03.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Farsi A, Jensen SH, Roslev P, Boffa V, Christensen ML. Inorganic Membranes for the Recovery of Effluent from Municipal Wastewater Treatment Plants. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Farsi
- Department of Chemistry and
Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg East, Denmark
| | - Sofie Hammer Jensen
- Department of Chemistry and
Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg East, Denmark
| | - Peter Roslev
- Department of Chemistry and
Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg East, Denmark
| | - Vittorio Boffa
- Department of Chemistry and
Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg East, Denmark
| | | |
Collapse
|
26
|
de Melo JR, Tres MV, Steffens J, Vladimir Oliveira J, Di Luccio M. Desolventizing organic solvent-soybean oil miscella using ultrafiltration ceramic membranes. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Marchetti P, Livingston AG. Predictive membrane transport models for Organic Solvent Nanofiltration: How complex do we need to be? J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.10.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Micovic J, Werth K, Lutze P. Hybrid separations combining distillation and organic solvent nanofiltration for separation of wide boiling mixtures. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Farsi A, Boffa V, Qureshi HF, Nijmeijer A, Winnubst L, Christensen ML. Modeling water flux and salt rejection of mesoporous γ-alumina and microporous organosilica membranes. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Zeidler S, Puhlfürß P, Kätzel U, Voigt I. Preparation and characterization of new low MWCO ceramic nanofiltration membranes for organic solvents. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Marchetti P, Jimenez Solomon MF, Szekely G, Livingston AG. Molecular separation with organic solvent nanofiltration: a critical review. Chem Rev 2014; 114:10735-806. [PMID: 25333504 DOI: 10.1021/cr500006j] [Citation(s) in RCA: 855] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Patrizia Marchetti
- Department of Chemical Engineering and Chemical Technology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
32
|
Cheng XQ, Zhang YL, Wang ZX, Guo ZH, Bai YP, Shao L. Recent Advances in Polymeric Solvent-Resistant Nanofiltration Membranes. ADVANCES IN POLYMER TECHNOLOGY 2014. [DOI: 10.1002/adv.21455] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xi Quan Cheng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| | - Yong Ling Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
- AB InBev Sedrin (Zhangzhou) Brewery Co., Ltd; Zhang Zhou People's Republic of China
| | - Zhen Xing Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| | - Zhan Hu Guo
- Integrated Composites Laboratory; Dan F. Smith Department of Chemical Engineering; Lamar University; Beaumont Texas 77710
| | - Yong Ping Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| | - Lu Shao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE); School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin People's Republic of China
| |
Collapse
|
33
|
Schmidt P, Micovic J, Lutze P, Górak A. Organophile Nanofiltration - Herausforderungen und Lösungsansätze zur Anwendung eines innovativen Membrantrennverfahrens. CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201300153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Abejón R, Garea A, Irabien A. Analysis and optimization of continuous organic solvent nanofiltration by membrane cascade for pharmaceutical separation. AIChE J 2014. [DOI: 10.1002/aic.14345] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ricardo Abejón
- Departamento de Ingenierías Química y Biomolecular; Universidad de Cantabria; Avda. Los Castros s/n 39005 Santander Cantabria Spain
| | - Aurora Garea
- Departamento de Ingenierías Química y Biomolecular; Universidad de Cantabria; Avda. Los Castros s/n 39005 Santander Cantabria Spain
| | - Angel Irabien
- Departamento de Ingenierías Química y Biomolecular; Universidad de Cantabria; Avda. Los Castros s/n 39005 Santander Cantabria Spain
| |
Collapse
|
35
|
Mautner A, Lee KY, Lahtinen P, Hakalahti M, Tammelin T, Li K, Bismarck A. Nanopapers for organic solvent nanofiltration. Chem Commun (Camb) 2014; 50:5778-81. [DOI: 10.1039/c4cc00467a] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The production of nanopapers from nanocellulose suspensions by a papermaking-process and their utilization as organic solvent nanofiltration membranes is demonstrated.
Collapse
Affiliation(s)
- A. Mautner
- Department of Chemical Engineering
- Polymer & Composite Engineering (PaCE) Group
- Imperial College London
- SW7 2AZ London, UK
| | - K.-Y. Lee
- Department of Chemical Engineering
- University College London
- WC1E 7JE London, UK
- Polymer & Composite Engineering (PaCE) group
- Institute for Materials Chemistry and Research
| | - P. Lahtinen
- VTT Technical Research Centre of Finland
- FL-02044 Espoo, Finland
| | - M. Hakalahti
- VTT Technical Research Centre of Finland
- FL-02044 Espoo, Finland
| | - T. Tammelin
- VTT Technical Research Centre of Finland
- FL-02044 Espoo, Finland
| | - K. Li
- Department of Chemical Engineering
- Imperial College London
- SW7 2AZ London, UK
| | - A. Bismarck
- Department of Chemical Engineering
- Polymer & Composite Engineering (PaCE) Group
- Imperial College London
- SW7 2AZ London, UK
- Polymer & Composite Engineering (PaCE) group
| |
Collapse
|
36
|
Li J, Wang M, Huang Y, Luo B, Zhang Y, Yuan Q. Separation of binary solvent mixtures with solvent resistant nanofiltration membranes part B: process modeling. RSC Adv 2014. [DOI: 10.1039/c4ra04224g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This part B of a two paper series develops an improved model derived from the classical solution-diffusion model, specifically for solvent separation process in SRNF.
Collapse
Affiliation(s)
- Jiandong Li
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Miaomiao Wang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Yucui Huang
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Beibei Luo
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Yuan Zhang
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Recourse Engineering
- Beijing University of Chemical Technology
- Beijing, PR China
| |
Collapse
|
37
|
Güven S, Hamers B, Franke R, Priske M, Becker M, Vogt D. Kinetics of cyclooctene hydroformylation for continuous homogeneous catalysis. Catal Sci Technol 2014. [DOI: 10.1039/c3cy00676j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Characterisation of organic solvent nanofiltration membranes in multi-component mixtures: Phenomena-based modelling and membrane modelling maps. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.05.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
|
40
|
Marchetti P, Butté A, Livingston AG. NF in organic solvent/water mixtures: Role of preferential solvation. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.04.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Lutze P, Gorak A. Reactive and membrane-assisted distillation: Recent developments and perspective. Chem Eng Res Des 2013. [DOI: 10.1016/j.cherd.2013.07.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Buekenhoudt A, Bisignano F, De Luca G, Vandezande P, Wouters M, Verhulst K. Unravelling the solvent flux behaviour of ceramic nanofiltration and ultrafiltration membranes. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.03.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Felix A, Herdegen V, Haseneder R, Härtel G, Repke JU. Analyse des Permeations- und Filtrationsverhaltens keramischer Membranen unter hydrothermalen Bedingungen. CHEM-ING-TECH 2013. [DOI: 10.1002/cite.201200204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Schmidt P, Köse T, Lutze P. Characterisation of organic solvent nanofiltration membranes in multi-component mixtures: Membrane rejection maps and membrane selectivity maps for conceptual process design. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.11.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
|