1
|
Tarazona KB, Ramos‐Rivera G, Suleiman D. Synthesis and characterization of multi‐ionic block copolymers and blended membranes for chemical protective clothing applications. J Appl Polym Sci 2023. [DOI: 10.1002/app.53595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Gilberto Ramos‐Rivera
- Chemical Engineering Department University of Puerto Rico‐Mayaguez Mayagüez Puerto Rico
| | - David Suleiman
- Chemical Engineering Department University of Puerto Rico‐Mayaguez Mayagüez Puerto Rico
| |
Collapse
|
2
|
Barrios‐Tarazona K, Suleiman D. Chemical and morphological effects of blended sulfonated poly(
styrene‐isobutylene‐styrene
) and isopentylamine for direct methanol fuel cell applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.50034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Karen Barrios‐Tarazona
- Chemical Engineering Department University of Puerto Rico Mayaguez Mayaguez Puerto Rico USA
| | - David Suleiman
- Chemical Engineering Department University of Puerto Rico Mayaguez Mayaguez Puerto Rico USA
| |
Collapse
|
3
|
Olvera-Mancilla J, Escorihuela J, Alexandrova L, Andrio A, García-Bernabé A, Del Castillo LF, Compañ V. Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. SOFT MATTER 2020; 16:7624-7635. [PMID: 32735001 DOI: 10.1039/d0sm00743a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, a series of composite proton exchange membranes comprising a cobaltacarborane protonated H[Co(C2B9H11)2] named (H[COSANE]) and polybenzimidazole (PBI) for a high temperature proton exchange membrane fuel cell (PEMFC) is reported, with the aim of enhancing the proton conductivity of PBI membranes doped with phosphoric acid. The effects of the anion [Co(C2B9H11)2] concentration in three different polymeric matrices based on the PBI structure, poly(2,2'-(m-phenylene)-5,5'-bibenzimidazole) (PBI-1), poly[2,2'-(p-oxydiphenylene)-5,5'-bibenzimidazole] (PBI-2) and poly(2,2'-(p-hexafluoroisopropylidene)-5,5'-bibenzimidazole) (PBI-3), have been investigated. The conductivity, diffusivity and mobility are greater in the composite membrane poly(2,2'-(p-hexafluoroisopropylidene)-5,5'-bibenzimidazole) containing fluorinated groups, reaching a maximum when the amount of H[COSANE] was 15%. In general, all the prepared membranes displayed excellent and tunable properties as conducting materials, with conductivities higher than 0.03 S cm-1 above 140 °C. From an analysis of electrode polarization (EP) the proton diffusion coefficients and mobility have been calculated.
Collapse
Affiliation(s)
- Jessica Olvera-Mancilla
- Departamento de polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70-360, Coyoacán, Ciudad de México, 04510, Mexico
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicente Andrés Estellés s/n, Burjassot 46100, Valencia, Spain.
| | - Larissa Alexandrova
- Departamento de polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70-360, Coyoacán, Ciudad de México, 04510, Mexico
| | - Andreu Andrio
- Departament de Física Aplicada, Universitat Jaume I, 12080, Castelló, Spain
| | - Abel García-Bernabé
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de Valencia, Campus de Vera s/n, 46022 Valencia, Spain.
| | - Luis Felipe Del Castillo
- Departamento de polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70-360, Coyoacán, Ciudad de México, 04510, Mexico
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de Valencia, Campus de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
4
|
Ruiz‐Colón E, Pérez‐Pérez M, Suleiman D. Transport properties of blended sulfonated poly(styrene‐isobutylene‐styrene) and isopropyl phosphate membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eduardo Ruiz‐Colón
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| | - Maritza Pérez‐Pérez
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| | - David Suleiman
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| |
Collapse
|
5
|
Ruiz‐Colón E, Pérez‐Pérez M, Ortiz‐Negrón A, Suleiman D. Polymer Nanocomposite Membranes of Sulfonated Poly(Styrene‐Isobutylene‐Styrene) With Sulfonated Graphene Oxide for Fuel Cell and Protective Clothing Applications. POLYM ENG SCI 2018. [DOI: 10.1002/pen.25018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Eduardo Ruiz‐Colón
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| | - Maritza Pérez‐Pérez
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| | | | - David Suleiman
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| |
Collapse
|
6
|
Fuentes I, Andrio A, García-Bernabé A, Escorihuela J, Viñas C, Teixidor F, Compañ V. Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Phys Chem Chem Phys 2018; 20:10173-10184. [PMID: 29594295 DOI: 10.1039/c8cp00372f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conductivity of a series of composite membranes, based on polybenzimidazole (PBI) containing the metallacarborane salt M[Co(C2B9H11)2], M[COSANE] and tetraphenylborate, M[B(C6H5)4], M[TPB] both anions having the same number of atoms and the same negative charge, has been investigated. Different cations (M = H+, Li+ and Na+) have been studied and the composite membranes have been characterized by water uptake, swelling ratios, ATR FT-IR, thermogravimetric analysis and electrochemical impedance spectroscopy to explore the dielectric response and ion dynamics in composite membranes. Our results show that conductivity increases with increasing temperature and it is higher for H+ than for Li+ and Na+ for all temperatures under study. The mobility of Li+ is greater in [COSANE]- than in [TPB]- composite PBI@membranes while for Na+ it is the opposite. The temperature dependence of the conductivity of the composite was followed by a typical Arrhenius behaviour with two different regions: (1) between 20 and 100 °C, and (2) between 100 and 150 °C. Using the analysis of electrode polarization (EP) based on the Thrukhan theory we have calculated the ionic diffusion coefficients and the density of carriers. From the double logarithmic plot of the imaginary part of the conductivity (σ'') versus frequency in the entire range of temperatures studied we have determined for each sample at each temperature, the frequency values of the onset (fON) and full development of electrode polarization (fMAX), respectively, which permit us to calculate static permittivity.
Collapse
Affiliation(s)
- Isabel Fuentes
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
7
|
He X, He G, Zhao A, Wang F, Mao X, Yin Y, Cao L, Zhang B, Wu H, Jiang Z. Facilitating Proton Transport in Nafion-Based Membranes at Low Humidity by Incorporating Multifunctional Graphene Oxide Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27676-27687. [PMID: 28766334 DOI: 10.1021/acsami.7b06424] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nafion, as a state-of-the-art solid electrolyte for proton exchange membrane fuel cells (PEMFCs), suffers from drastic decline in proton conductivity with decreasing humidity, which significantly restricts the efficient and stable operation of the fuel cell system. In this study, the proton conductivity of Nafion at low relative humidity (RH) was remarkably enhanced by incorporating multifunctional graphene oxide (GO) nanosheets as multifunctional fillers. Through surface-initiated atom transfer radical polymerization of sulfopropyl methacrylate (SPM) and poly(ethylene glycol) methyl ether methacrylate, the copolymer-grafted GO was synthesized and incorporated into the Nafion matrix, generating efficient paths at the Nafion-GO interface for proton conduction. The Lewis basic oxygen atoms of ethylene oxide (EO) units and sulfonated acid groups of SPM monomers served as additional proton binding and release sites to facilitate the proton hopping through the membrane. Meanwhile, the hygroscopic EO units enhanced the water retention property of the composite membrane, conferring a dramatic increase in proton conductivity under low humidity. With 1 wt % filler loading, the composite membrane displayed the highest proton conductivity of 2.98 × 10-2 S cm-1 at 80 °C and 40% RH, which was 10 times higher than that of recast Nafion. Meanwhile, the Nafion composite exhibited a 135.5% increase in peak power density at 60 °C and 50% RH, indicating its great application potential in PEMFCs.
Collapse
Affiliation(s)
- Xueyi He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Anqi Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Fei Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Xunli Mao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Yongheng Yin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Bei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| |
Collapse
|