1
|
Neto S, Mendes JP, Santos SBD, Solbrand A, Carrondo MJT, Peixoto C, Silva RJS. Efficient adeno-associated virus serotype 5 capture with affinity functionalized nanofiber adsorbents. Front Bioeng Biotechnol 2023; 11:1183974. [PMID: 37260828 PMCID: PMC10229133 DOI: 10.3389/fbioe.2023.1183974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Adeno-associated viruses (AAVs) are one of the most promising tools for gene therapy applications. These vectors are purified using affinity and ion exchange chromatography, typically using packed beds of resin adsorbents. This leads to diffusion and pressure drop limitations that affect process productivity. Due to their high surface area and porosity, electrospun nanofiber adsorbents offer mass transfer and flow rate advantages over conventional chromatographic media. The present work investigated the use of affinity cellulose-based nanofiber adsorbents for adeno-associated virus serotype 5 (AAV5) capture, evaluating dynamic binding capacity, pressure drop, and AAV5 recovery at residence times (RT) less than 5 s. The dynamic binding capacity was found to be residence time-dependent, but nevertheless higher than 1.0 × 1014 TP mL-1 (RT = 1.6 s), with a pressure drop variation of 0.14 MPa obtained after loading more than 2,000 column volumes of clarified AAV5 feedstock. The single affinity chromatography purification step using these new affinity adsorbents resulted in 80% virus recovery, with the removal of impurities comparable to that of bead-based affinity adsorbents. The high binding capacity, virus recovery and reduced pressure drop observed at residence times in the sub-minute range can potentially eliminate the need for prior concentration steps, thereby reducing the overall number of unit operations, process time and costs.
Collapse
Affiliation(s)
- Salomé Neto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P. Mendes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo J. S. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
2
|
Kurák T, Polakovič M. Adsorption Performance of a Multimodal Anion-Exchange Chromatography Membrane: Effect of Liquid Phase Composition and Separation Mode. MEMBRANES 2022; 12:1173. [PMID: 36557080 PMCID: PMC9788217 DOI: 10.3390/membranes12121173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Membrane chromatography is a modern, high-throughput separation method that finds important applications in therapeutic protein purification. Multimodal, salt-tolerant membranes are the most recent innovation in chromatographic membrane adsorbents. Due to the complex structure of their ligands and the bimodal texture of their carriers, their adsorption properties have not been sufficiently investigated. This work deals with the equilibrium and kinetic properties of a multimodal anion-exchange chromatography membrane, Sartobind STIC. Single- and two-component adsorption experiments were carried out with bovine serum albumin (BSA) and salmon DNA as model target and impurity components. The effect of the Hofmeister series ions and ionic strength on the BSA/DNA adsorption was investigated in micromembrane flow experiments. A significant difference was observed between the effects of monovalent and polyvalent ions when strong kosmotropic salts with polyvalent anions acted as strong displacers of BSA. On the contrary, DNA binding was rather high at elevated ionic strength, independent of the salt type. Two-component micromembrane experiments confirmed very high selectivity of DNA binding at a rather low sodium sulfate feed content and at pH 8. The strength of binding was examined in more than a dozen different desorption experiments. While BSA was desorbed relatively easily using high salt concentrations independent of buffer type and pH, while DNA was desorbed only in a very limited measure under any conditions. Separation experiments in a laboratory membrane module were carried out for the feed containing 1 g/L of BSA, 0.3 g/L of DNA, and 0.15 M of sodium sulfate. The negative flow-through mode was found to be more advantageous than the bind-elute mode, as BSA was obtained with 99% purity and a 97% yield. Membrane reuse was investigated in three adsorption-desorption-regeneration cycles.
Collapse
|
3
|
Use of the Dispersion Coefficient as the Sole Structural Parameter to Model Membrane Chromatography. MEMBRANES 2022; 12:membranes12070668. [PMID: 35877871 PMCID: PMC9315837 DOI: 10.3390/membranes12070668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023]
Abstract
The characterization and modelling of membrane chromatography processes require the axial dispersion coefficient as a relevant and effective intrinsic property of porous media, instead of arbitrary assumptions on pore size distribution. The dispersion coefficient can be easily measured by experiments completely independent of chromatographic tests. The paper presents the prediction of experimentally obtained breakthrough curves using B14-TRZ-Epoxy2 membranes as a test case; the mathematical model implemented is based on the use of the experimentally measured axial dispersion coefficient as an input parameter. Application of the model and its comparison with the data demonstrate that alternative ways of explaining the shape of breakthrough curves, based on unverified assumptions about the membrane pore size distribution, are not feasible and not effectively supported by experimental evidence. In contrast, the axial dispersion coefficient is the only measurable parameter that accounts for all the different contributions to the dispersion phenomenon that occurs in the membrane chromatography process, including the effects due to porous structure and pore size distribution. Therefore, mathematical models that rely on the mere assumption of pore size distribution, regardless of the role of the axial dispersion coefficient, are in fact arbitrary and ultimately misleading.
Collapse
|
4
|
Yang X, Merenda A, AL-Attabi R, Dumée LF, Zhang X, Thang SH, Pham H, Kong L. Towards next generation high throughput ion exchange membranes for downstream bioprocessing: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Removal of calcium ions from aqueous solution by bovine serum albumin (BSA)-modified nanofiber membrane: Dynamic adsorption performance and breakthrough analysis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Osuofa J, Henn D, Zhou J, Forsyth A, Husson SM. High-capacity multimodal anion-exchange membranes for polishing of therapeutic proteins. Biotechnol Prog 2021; 37:e3129. [PMID: 33475239 DOI: 10.1002/btpr.3129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023]
Abstract
This contribution reports on a study using Purexa™-MQ multimodal anion-exchange (AEX) membranes for protein polishing at elevated solution conductivities. Dynamic binding capacities (DBC10 ) of bovine serum albumin (BSA), human immunoglobulins, and salmon sperm DNA (ss-DNA) are reported for various salt types, salt concentrations, flowrates, and pH. Using 1 mg/ml BSA, DBC10 values for Purexa™-MQ were >90 mg/ml at conductivities up to 15 mS/cm. The membranes maintained a high, salt-tolerant BSA DBC10 of 89.8 ± 2.7 (SD) over the course of 100 bind-elute cycles. Polishing studies with acidic and basic monoclonal antibodies at >2 kg/L loads showed that Purexa™-MQ had higher clearance of host cell proteins and aggregate species at high conductivity (13 mS/cm) and in the presence of phosphate than other commercial AEX media. Purexa™-MQ also had a high ss-DNA DBC10 of 50 mg/ml at conductivities up to 15 mS/cm, markedly outperforming other commercial products. In addition to the effectiveness of Purexa™-MQ for protein polishing at elevated solution conductivities, its unusually high binding capacity for ss-DNA indicates potential applications for plasmid DNA purification.
Collapse
Affiliation(s)
- Joshua Osuofa
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
| | - Daniel Henn
- Purilogics, LLC, Greenville, South Carolina, USA
| | | | - Anna Forsyth
- Purilogics, LLC, Greenville, South Carolina, USA
| | - Scott M Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
7
|
Song C, Wang M, Liu X, Wang H, Chen X, Dai L. Fabrication of high-capacity polyelectrolyte brush-grafted porous AAO-silica composite membrane via RAFT polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:748-755. [DOI: 10.1016/j.msec.2017.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 01/08/2023]
|
8
|
Balkani S, Shamekhi S, Raoufinia R, Parvan R, Abdolalizadeh J. Purification and Characterization of Bovine Serum Albumin Using Chromatographic Method. Adv Pharm Bull 2016; 6:651-654. [PMID: 28101473 PMCID: PMC5241424 DOI: 10.15171/apb.2016.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/19/2016] [Accepted: 11/24/2016] [Indexed: 11/09/2022] Open
Abstract
Purpose: Albumin is an abundant protein of blood and has many biopharmaceutical applications. The aim of this study was to purify bovine serum albumin (BSA) using produced rabbit anti-BSA antibody. Methods: The polyclonal antibody was produced against the BSA in rabbits. Then, the pure BSA was injected to three white New Zealand rabbits. ELISA test was done to evaluate antibody production. After antibody purification,the purified antibody was attached to CNBr-activated sepharose and finally it was used for purification of albumin from bovine serum. Western blotting analysis was used for functional assessment of immunoaffinity purified BSA. Results: The titer of anti-bovine albumin determined by ELISA was obtained 1: 256000. The SDS-PAGE showed up to 98% purity of isolated BSA and western blotting confirmed the BSA functionality. Purified bovine serum albumin by affinity chromatography showed a single band with molecular weight of 66 KDa. Conclusion: Affinity chromatography using produced rabbit anti-BSA antibody would be an economical and safe method for purification of BSA.
Collapse
Affiliation(s)
- Sanaz Balkani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- University of Tehran Kish International Campus, Tehran University, Tehran, Iran
| | - Sara Shamekhi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Raoufinia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Parvan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Paramedical faculty, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Comparison of Membrane Chromatography and Monolith Chromatography for Lactoferrin and Bovine Serum Albumin Separation. Processes (Basel) 2016. [DOI: 10.3390/pr4030031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Vapor-based coatings for antibacterial and osteogenic functionalization and the immunological compatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:283-91. [PMID: 27612715 DOI: 10.1016/j.msec.2016.06.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 06/26/2016] [Indexed: 11/24/2022]
Abstract
The immobilization of biofunctional molecules to biomaterial surfaces has enabled and expanded the versatility of currently available biomaterials to a wider range of applications. In addition, immobilized biomolecules offer modified surfaces that allow the use of smaller amounts of potentially harmful substances or prevent overdose, while the exhibited biological functions remain persistently effective. Surface concentrations of chlorhexidine (CHX) (1.40±0.08×10(-9)mol·cm(-2)) and bone morphogenetic protein 2 (BMP-2) (1.51±0.08×10(-11)mol·cm(-2)) immobilized molecules were determined in this study, and their specific biological functions in terms of antibacterial activity and osteogenesis potency, respectively, were demonstrated to be unambiguously effective. Immobilization exploits the use of vapor-based poly-p-xylylenes, which exhibit excellent biocompatibility and wide applicability for various substrate materials. This technique represents a practical and economical approach for the manufacture of certain industrial products. Furthermore, a minimal degree of macrophage activation was indicated on the modified surfaces via insignificant morphological changes and low levels of adverse inflammatory signals, including suppressed production of the pro-inflammatory cytokines IL-1β and TNF-α as well as nitric oxide (NO). The results and the modification strategy illustrate a concept for designing prospective biomaterial surfaces such that the manipulation employed to elicit targeted biological responses does not compromise immunological compatibility.
Collapse
|
11
|
Ladd Effio C, Hahn T, Seiler J, Oelmeier SA, Asen I, Silberer C, Villain L, Hubbuch J. Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles. J Chromatogr A 2015; 1429:142-54. [PMID: 26718185 DOI: 10.1016/j.chroma.2015.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022]
Abstract
Recombinant protein-based virus-like particles (VLPs) are steadily gaining in importance as innovative vaccines against cancer and infectious diseases. Multiple VLPs are currently evaluated in clinical phases requiring a straightforward and rational process design. To date, there is no generic platform process available for the purification of VLPs. In order to accelerate and simplify VLP downstream processing, there is a demand for novel development approaches, technologies, and purification tools. Membrane adsorbers have been identified as promising stationary phases for the processing of bionanoparticles due to their large pore sizes. In this work, we present the potential of two strategies for designing VLP processes following the basic tenet of 'quality by design': High-throughput experimentation and process modeling of an anion-exchange membrane capture step. Automated membrane screenings allowed the identification of optimal VLP binding conditions yielding a dynamic binding capacity of 5.7 mg/mL for human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A mechanistic approach was implemented for radial ion-exchange membrane chromatography using the lumped-rate model and stoichiometric displacement model for the in silico optimization of a VLP capture step. For the first time, process modeling enabled the in silico design of a selective, robust and scalable process with minimal experimental effort for a complex VLP feedstock. The optimized anion-exchange membrane chromatography process resulted in a protein purity of 81.5%, a DNA clearance of 99.2%, and a VLP recovery of 59%.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Tobias Hahn
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Julia Seiler
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Stefan A Oelmeier
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | | | | | | | - Jürgen Hubbuch
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany.
| |
Collapse
|
12
|
Mündges J, Zierow J, Langer U, Zeiner T. Possibilities to intensify and integrate aqueous two-phase extraction for IgG purification. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Teepakorn C, Fiaty K, Charcosset C. Optimization of lactoferrin and bovine serum albumin separation using ion-exchange membrane chromatography. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.07.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Effect of geometry and scale for axial and radial flow membrane chromatography—Experimental study of bovin serum albumin adsorption. J Chromatogr A 2015; 1403:45-53. [DOI: 10.1016/j.chroma.2015.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 11/23/2022]
|
15
|
Muendges J, Zalesko A, Górak A, Zeiner T. Multistage aqueous two-phase extraction of a monoclonal antibody from cell supernatant. Biotechnol Prog 2015; 31:925-36. [PMID: 25857432 DOI: 10.1002/btpr.2088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/27/2015] [Indexed: 11/08/2022]
Abstract
This article presents results of continuous multistage aqueous two-phase extraction of an immunoglobulin G1 from cell supernatant in a mixer-settler unit. An aqueous two-phase system consisting of polyethylene glycol 2000, phosphate salt, and water was applied without and with sodium chloride (NaCl). Influences of different parameters such as throughput, phase ratio, and stage number on the extraction performance were analyzed. For systems without NaCl, the extraction was carried out as a washing step. An increase of stage number from one to five stages enabled to increase the immunoglobulin G1 purity from 11.8 to 32.6% at a yield of nearly 90%. Furthermore, a reduction of product phase volume due to a higher phase ratio led to an increase of purity from 20.8 to 29.6% in a three-stage countercurrent extraction. For experiments with NaCl moderate partitioning conditions were adjusted by adding 8 wt% NaCl. In that case, the extraction was carried out as a stripping step.
Collapse
Affiliation(s)
- Jan Muendges
- Laboratory of Fluid Separations, Dept. of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, D-44227, Germany
| | - Alexej Zalesko
- Laboratory of Fluid Separations, Dept. of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, D-44227, Germany
| | - Andrzej Górak
- Laboratory of Fluid Separations, Dept. of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, D-44227, Germany.,Dept. of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lódz, 90-924, Poland
| | - Tim Zeiner
- Laboratory of Fluid Separations, Dept. of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, D-44227, Germany
| |
Collapse
|
16
|
Puthirasigamany M, Hamm I, van Winssen FA, Nikbin N, Kreis P, Gorak A, Zeiner T. Purification of biomolecules combining ATPS and membrane chromatography. FOOD AND BIOPRODUCTS PROCESSING 2014. [DOI: 10.1016/j.fbp.2014.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
He Y, Chen X, Bi S, Shi C, Chen L, Li L. Structure and pH-sensitive properties of poly (vinylidene fluoride) membrane changed by blending poly (acrylic acid) microgels. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang He
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 PR China
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes; Tianjin Polytechnic University; Tianjin 300387 PR China
| | - Xi Chen
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 PR China
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes; Tianjin Polytechnic University; Tianjin 300387 PR China
| | - Shiyin Bi
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 PR China
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes; Tianjin Polytechnic University; Tianjin 300387 PR China
| | - Congcong Shi
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 PR China
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes; Tianjin Polytechnic University; Tianjin 300387 PR China
| | - Li Chen
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 PR China
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes; Tianjin Polytechnic University; Tianjin 300387 PR China
| | - Liying Li
- School of Environment and Chemical Engineering; Tianjin Polytechnic University; Tianjin 300387 PR China
| |
Collapse
|
18
|
Orr V, Zhong L, Moo-Young M, Chou CP. Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv 2013; 31:450-65. [DOI: 10.1016/j.biotechadv.2013.01.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/20/2013] [Indexed: 01/03/2023]
|
19
|
Wei Y, Ma J, Wang C. Preparation of high-capacity strong cation exchange membrane for protein adsorption via surface-initiated atom transfer radical polymerization. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.09.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|