Preparation of Graft Poly(Arylene Ether Sulfone)s-Based Copolymer with Enhanced Phase-Separated Morphology as Proton Exchange Membranes via Atom Transfer Radical Polymerization.
Polymers (Basel) 2019;
11:polym11081297. [PMID:
31382443 PMCID:
PMC6722611 DOI:
10.3390/polym11081297]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 11/25/2022] Open
Abstract
Novel proton exchange membranes (PEMs) based on graft copoly(arylene ether sulfone)s with enhanced phase-separated morphology were prepared using atom transfer radical polymerization (ATRP). A series of PEMs with different graft lengths and sulfonation degrees were prepared. The phase-separated morphologies were confirmed by transmission electron microscopy. Among the membranes prepared and evaluated, PAESPS18S2 exhibited considerably high proton conductivity (0.151 S/cm, 85 °C), benefitting from the graft polymer architecture and phase-separated morphology. The membranes also possessed excellent thermal and chemical stabilities. Highly conductive and stable copoly(arylene ether sulfone)-based membranes would be promising candidates as polymer electrolytes for fuel cell applications.
Collapse