1
|
Domínguez-López LG, Mejía-Manzano LA, González-Valdez J. Using the reactive/transport dispersive models to simulate a monolithic anion exchanger: Experimental parameter determination, simultaneous model evaluation, and validation. Electrophoresis 2024; 45:1630-1643. [PMID: 38850174 DOI: 10.1002/elps.202300133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/21/2023] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Selecting an adequate model to represent the mass transfer mechanisms occurring in a chromatographic process is generally complicated, which is one of the reasons why monolithic chromatography is scarcely simulated. In this study, the chromatographic separation of model proteins bovine serum albumin (BSA), β-lactoglobulin-A, and β-lactoglobulin-B on an anion exchange monolith was simulated based on experimental parameter determination, simultaneous model testing, and validation under three statistical criteria: retention time, dispersion accuracies, and Pearson correlation coefficient. Experimental characterization of morphologic, physicochemical, and kinetic parameters was performed through volume balances, pressure drop analysis, breakthrough curve analysis, and batch adsorptions. Free Gibbs energy indicated a spontaneous adsorption process for proteins and counterions. Dimensionless numbers were estimated based on height equivalent to a theoretical plate analysis, finding that pore diffusion controlled β-lactoglobulin separation, whereas adsorption/desorption kinetics was the dominant mechanism for BSA. The elution profiles were modeled using the transport dispersive model and the reactive dispersive model coupled with steric mass action (SMA) isotherms because these models allowed to consider most of the mass transport mechanisms that have been described. RDM-SMA presented the most accurate simulations at pH 6.0 and at low (250 mM) and high (400 mM) NaCl concentrations. This simulation will be used as reference to forecast the purification of these proteins from bovine whey waste and to extrapolate this methodology to other monolith-based separations using these three statistical criteria that have not been used previously for this purpose.
Collapse
Affiliation(s)
| | | | - José González-Valdez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| |
Collapse
|
2
|
Nadar S, Somasundaram B, Charry M, Billakanti J, Shave E, Baker K, Lua LHL. Design and optimization of membrane chromatography for monoclonal antibody charge variant separation. Biotechnol Prog 2022; 38:e3288. [PMID: 35818846 PMCID: PMC10078440 DOI: 10.1002/btpr.3288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022]
Abstract
The manufacturing scale implementation of membrane chromatography to purify monoclonal antibodies has gradually increased with the shift in industry focus towards flexible manufacturing and disposable technologies. Membrane chromatography are used to remove process-related impurities such as host cell proteins and DNA, leachates and endotoxins, with improved productivity and process flexibility. However, application of membrane chromatography to separate product-related variants such as charge variants has not gained major traction due to low binding capacity. The work reported here demonstrates that a holistic process development strategy to optimize static binding (pH and salt concentration) and dynamic process (membrane loading, flowrate, and gradient length) parameters can alleviate the capacity limitations. The study employed high throughput screening tools and scale-down membranes for intermediate and polishing purification of the model monoclonal antibody. An optimized process consisting of anion exchange and cation exchange membrane chromatography reduced the acidic variants present in Protein A eluate from 89.5 % to 19.2 % with 71 % recovery of the target protein. The membrane chromatography process also cleared host cell protein to below limit of detection with 6 to 30-fold higher membrane loading, compared to earlier reported values. The results confirm that membrane chromatography is effective in separating closely related product variants when supported by a well-defined process development strategy.
Collapse
Affiliation(s)
- Sathish Nadar
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, Australia
| | - Balaji Somasundaram
- Protein Expression Facility, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, Australia
| | - Marcela Charry
- Protein Expression Facility, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, Australia
| | - Jagan Billakanti
- Global Life Sciences Solutions Australia Pty Ltd, 32 Phillip St, Parramatta, Sydney, New south wales, Australia
| | - Evan Shave
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, Australia.,Patheon Biologics, Pharma Services Group, Thermo Fisher Scientific, 37 Kent St, Woolloongabba, Brisbane, Queensland, Australia
| | - Kym Baker
- Patheon Biologics, Pharma Services Group, Thermo Fisher Scientific, 37 Kent St, Woolloongabba, Brisbane, Queensland, Australia
| | - Linda H L Lua
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, Australia.,Protein Expression Facility, The University of Queensland, Corner College and Cooper Roads, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Winderl J, Bürkle S, Hubbuch J. High throughput screening of fiber-based adsorbents for material and process development. J Chromatogr A 2021; 1653:462387. [PMID: 34375899 DOI: 10.1016/j.chroma.2021.462387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
There has been a growing interest in fibers and fiber-based adsorbents as alternative adsorbents for preparative chromatography. While the benefits of fiber-based adsorbents in terms of productivity have been highlighted in several recent studies, microscale tools that enable a fast characterization of these novel adsorbents, and an easy integration into process development workflows, are still lacking. In the present study an automated high-throughput screening (HTS) for fiber-based adsorbents was established on a robotic liquid handling station in 96 well filter plates. Two techniques - punching and weighing - were identified as techniques that enabled accurate and reproducible portioning of short-cut fiber-based adsorbents. The impact of several screening parameters such as phase ratio, shaking frequency, and incubation time were investigated and optimized for different types of fiber-based adsorbents. The data from the developed HTS correlated with data from packed fiber columns, and binding capacities from both scales matched closely. Subsequently, the developed HTS was utilized to optimize the hydrogel architecture of anion exchange (AEX) fiber-based adsorbent prototypes. A novel AEX fiber-based adsorbent was developed that compared favorably with existing resin and membrane adsorbents in terms of productivity and DNA binding capacity. In addition, the developed HTS was also successfully employed in order to identify step elution conditions for the purification of a monoclonal antibody from product- and process-related impurities with a cation exchange (CEX) fiber-based adsorbent. Trends from the HTS were found to be in good agreement with trends from lab scale column runs. The tool developed in this paper will enable a faster and more complete characterization of fiber-based adsorbents, easier tailoring of such adsorbents towards specific process applications, and an easier integration of such materials into processes. In comparison to previous lab scale experiments, material requirements are reduced by a factor of 3-40 and time requirements are reduced by a factor of 2-5.
Collapse
Affiliation(s)
- Johannes Winderl
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Stephan Bürkle
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
4
|
High-Throughput Process Development: II-Membrane Chromatography. Methods Mol Biol 2020. [PMID: 33128740 DOI: 10.1007/978-1-0716-0775-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Membrane chromatography is gradually emerging as an alternative to conventional column chromatography. It alleviates some of the major disadvantages associated with the latter, including high-pressure drop across the column bed and dependence on intraparticle diffusion for the transport of solute molecules to their binding sites within the pores of separation media. In the last decade, it has emerged as a method of choice for final polishing of biopharmaceuticals, in particular, monoclonal antibody products. The relevance of such a platform is high in view of the constraints with respect to time and resources that the biopharma industry faces today.This protocol describes the steps involved in performing HTPD of a membrane chromatography step. It describes the operation of a commercially available device (AcroPrep™ Advance filter plate with Mustang S membrane from Pall Corporation). This device is available in 96-well format with a 7 μL membrane in each well. We will discuss the challenges that one faces when performing such experiments as well as possible solutions to alleviate them. Besides describing the operation of the device, the protocol also presents an approach for statistical analysis of the data that are gathered from such a platform. A case study involving the use of the protocol for examining ion-exchange chromatography of the Granulocyte Colony Stimulating Factor (GCSF), a therapeutic product, is briefly discussed. This is intended to demonstrate the usefulness of this protocol in generating data that are representative of the data obtained at the traditional lab scale. The agreement in the data is indeed very significant (regression coefficient 0.9866). We think that this protocol will be of significant value to those involved in performing high-throughput process development of membrane chromatography.
Collapse
|
5
|
Smirnova NN, Krasil’nikov IV. An Effect of the Nature of Immobilized Components on the Adsorption and Mass Transfer Properties of Ultrafiltration Membranes Based on Sulfonate-containing Сopolyamide. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427219110144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Tripathi NK, Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol 2019; 7:420. [PMID: 31921823 PMCID: PMC6932962 DOI: 10.3389/fbioe.2019.00420] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases, along with cancers, are among the main causes of death among humans worldwide. The production of therapeutic proteins for treating diseases at large scale for millions of individuals is one of the essential needs of mankind. Recent progress in the area of recombinant DNA technologies has paved the way to producing recombinant proteins that can be used as therapeutics, vaccines, and diagnostic reagents. Recombinant proteins for these applications are mainly produced using prokaryotic and eukaryotic expression host systems such as mammalian cells, bacteria, yeast, insect cells, and transgenic plants at laboratory scale as well as in large-scale settings. The development of efficient bioprocessing strategies is crucial for industrial production of recombinant proteins of therapeutic and prophylactic importance. Recently, advances have been made in the various areas of bioprocessing and are being utilized to develop effective processes for producing recombinant proteins. These include the use of high-throughput devices for effective bioprocess optimization and of disposable systems, continuous upstream processing, continuous chromatography, integrated continuous bioprocessing, Quality by Design, and process analytical technologies to achieve quality product with higher yield. This review summarizes recent developments in the bioprocessing of recombinant proteins, including in various expression systems, bioprocess development, and the upstream and downstream processing of recombinant proteins.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
7
|
B Carvalho S, Fortuna AR, Wolff MW, Peixoto C, M Alves P, Reichl U, JT Carrondo M. Purification of influenza virus-like particles using sulfated cellulose membrane adsorbers. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:1988-1996. [PMID: 30008506 PMCID: PMC6033026 DOI: 10.1002/jctb.5474] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Vaccines based on virus-like particles (VLPs) are an alternative to inactivated viral vaccines that combine good safety profiles with strong immunogenicity. In order to be economically competitive, efficient manufacturing is required, in particular downstream processing, which often accounts for major production costs. This study describes the optimization and establishment of a chromatography capturing technique using sulfated cellulose membrane adsorbers (SCMA) for purification of influenza VLPs. RESULTS Using a design of experiments approach, the critical factors for SCMA performance were described and optimized. For optimal conditions (membrane ligand density: 15.4 µmol cm-2, salt concentration of the loading buffer: 24 mmol L-1 NaCl, and elution buffer: 920 mmol L-1 NaCl, as well as the corresponding flow rates: 0.24 and 1.4 mL min-1), a yield of 80% in the product fraction was obtained. No loss of VLPs was detected in the flowthrough fraction. Removal of total protein and DNA impurities were higher than 89% and 80%, respectively. CONCLUSION Use of SCMA represents a significant improvement compared with conventional ion exchanger membrane adsorbers. As the method proposed is easily scalable and reduces the number of steps required compared with conventional purification methods, SCMA could qualify as a generic platform for purification of VLP-based influenza vaccines. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - A Raquel Fortuna
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Michael W Wolff
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGießenGermany
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Otto von Guericke University MagdeburgMagdeburgGermany
| | - Manuel JT Carrondo
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
| |
Collapse
|
8
|
Fortuna AR, Taft F, Villain L, Wolff MW, Reichl U. Optimization of cell culture-derived influenza A virus particles purification using sulfated cellulose membrane adsorbers. Eng Life Sci 2017; 18:29-39. [PMID: 32624858 DOI: 10.1002/elsc.201700108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 11/08/2022] Open
Abstract
Downstream processing remains one of the biggest challenges in manufacturing of biologicals and vaccines. This work focuses on a Design of Experiments approach to understand factors influencing the performance of sulfated cellulose membrane adsorbers for the chromatographic purification of a cell culture-derived H1N1 influenza virus strain (A/Puerto Rico/8/34). Membranes with a medium ligand density together with low conductivity and a high virus titer in the feed stream resulted in optimum virus yields and low protein and DNA content in the product fraction. Flow rate and salt concentration in the buffer used for elution were of secondary importance while membrane permeability had no significant impact on separation performance. A virus loss of 2.1% in the flow through, a yield of 57.4% together with a contamination level of 5.1 pgDNA HAU-1 and 1.2 ngprot HAU-1 were experimentally confirmed for the optimal operating point predicted. The critical process parameters identified and their optimal settings should support the optimization of sulfated cellulose membrane adsorbers based purification trains for other influenza virus strains, streamlining cell culture-derived vaccine manufacturing.
Collapse
Affiliation(s)
- Ana Raquel Fortuna
- Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Florian Taft
- R&D Membrane Modification Sartorius Stedim Biotech GmbH Göttingen Germany
| | - Louis Villain
- R&D Membrane Modification Sartorius Stedim Biotech GmbH Göttingen Germany
| | - Michael W Wolff
- Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany.,Institute of Bioprocess Engineering and Pharmaceutical Technology University of Applied Sciences Mittelhessen Gießen Germany
| | - Udo Reichl
- Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany.,Chair of Bioprocess Engineering Otto-von-Guericke University Magdeburg Magdeburg Germany
| |
Collapse
|
9
|
Selekman JA, Qiu J, Tran K, Stevens J, Rosso V, Simmons E, Xiao Y, Janey J. High-Throughput Automation in Chemical Process Development. Annu Rev Chem Biomol Eng 2017; 8:525-547. [DOI: 10.1146/annurev-chembioeng-060816-101411] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joshua A. Selekman
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903;, , , , , , ,
| | - Jun Qiu
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903;, , , , , , ,
| | - Kristy Tran
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903;, , , , , , ,
| | - Jason Stevens
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903;, , , , , , ,
| | - Victor Rosso
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903;, , , , , , ,
| | - Eric Simmons
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903;, , , , , , ,
| | - Yi Xiao
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903;, , , , , , ,
| | - Jacob Janey
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903;, , , , , , ,
| |
Collapse
|
10
|
|
11
|
Implementation of Quality by Design for processing of food products and biotherapeutics. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Baumann P, Hubbuch J. Downstream process development strategies for effective bioprocesses: Trends, progress, and combinatorial approaches. Eng Life Sci 2016; 17:1142-1158. [PMID: 32624742 DOI: 10.1002/elsc.201600033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 12/26/2022] Open
Abstract
The biopharmaceutical industry is at a turning point moving toward a more customized and patient-oriented medicine (precision medicine). Straightforward routines such as the antibody platform process are extended to production processes for a new portfolio of molecules. As a consequence, individual and tailored productions require generic approaches for a fast and dedicated purification process development. In this article, different effective strategies in biopharmaceutical purification process development are reviewed that can analogously be used for the new generation of antibodies. Conventional approaches based on heuristics and high-throughput process development are discussed and compared to modern technologies such as multivariate calibration and mechanistic modeling tools. Such approaches constitute a good foundation for fast and effective process development for new products and processes, but their full potential becomes obvious in a correlated combination. Thus, different combinatorial approaches are presented, which might become future directions in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Pascal Baumann
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Jürgen Hubbuch
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| |
Collapse
|
13
|
Rathore AS, Singh SK. Production of Protein Therapeutics in the Quality by Design (QbD) Paradigm. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2015_5004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
14
|
Muthukumar S, Rathore AS. Use of polymeric membranes for purification of an E. coli expressed biotherapeutic protein. Prep Biochem Biotechnol 2015; 46:183-91. [DOI: 10.1080/10826068.2015.1045609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S. Muthukumar
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Anurag S. Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, India
| |
Collapse
|
15
|
Current advances in the development of high-throughput purification strategies for the generation of therapeutic antibodies. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.15.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
|
17
|
Kumar V, Rathore AS. Two-stage chromatographic separation of aggregates for monoclonal antibody therapeutics. J Chromatogr A 2014; 1368:155-62. [DOI: 10.1016/j.chroma.2014.09.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/17/2014] [Accepted: 09/27/2014] [Indexed: 10/24/2022]
|
18
|
|
19
|
Bhambure R, Sharma I, Pattanayek SK, Rathore AS. Qualitative and quantitative examination of non-specific protein adsorption on filter membrane disks of a commercially available high throughput chromatography device. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Abstract
Membrane chromatography is gradually emerging as an alternative to conventional column chromatography. It alleviates some of the major disadvantages associated with the latter including high pressure drop across the column bed and dependence on intra-particle diffusion for the transport of solute molecules to their binding sites within the pores of separation media. In the last decade, it has emerged as a method of choice for final polishing of biopharmaceuticals, in particular monoclonal antibody products. The relevance of such a platform is high in view of the constraints with respect to time and resources that the biopharma industry faces today. This protocol describes the steps involved in performing HTPD of a membrane chromatography step. It describes operation of a commercially available device (AcroPrep™ Advance filter plate with Mustang S membrane from Pall Corporation). This device is available in 96-well format with 7 μL membrane in each well. We discuss the challenges that one faces when performing such experiments as well as possible solutions to alleviate them. Besides describing the operation of the device, the protocol also presents an approach for statistical analysis of the data that is gathered from such a platform. A case study involving use of the protocol for examining ion exchange chromatography of Granulocyte Colony Stimulating Factor (GCSF), a therapeutic product, is briefly discussed. This is intended to demonstrate the usefulness of this protocol in generating data that is representative of the data obtained at the traditional lab scale. The agreement in the data is indeed very significant (regression coefficient 0.99). We think that this protocol will be of significant value to those involved in performing high-throughput process development of membrane chromatography.
Collapse
Affiliation(s)
- Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India,
| | | |
Collapse
|
21
|
Kumar V, Bhalla A, Rathore AS. Design of experiments applications in bioprocessing: concepts and approach. Biotechnol Prog 2013; 30:86-99. [PMID: 24123959 DOI: 10.1002/btpr.1821] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/26/2013] [Indexed: 11/05/2022]
Abstract
Most biotechnology unit operations are complex in nature with numerous process variables, feed material attributes, and raw material attributes that can have significant impact on the performance of the process. Design of experiments (DOE)-based approach offers a solution to this conundrum and allows for an efficient estimation of the main effects and the interactions with minimal number of experiments. Numerous publications illustrate application of DOE towards development of different bioprocessing unit operations. However, a systematic approach for evaluation of the different DOE designs and for choosing the optimal design for a given application has not been published yet. Through this work we have compared the I-optimal and D-optimal designs to the commonly used central composite and Box-Behnken designs for bioprocess applications. A systematic methodology is proposed for construction of the model and for precise prediction of the responses for the three case studies involving some of the commonly used unit operations in downstream processing. Use of Akaike information criterion for model selection has been examined and found to be suitable for the applications under consideration.
Collapse
Affiliation(s)
- Vijesh Kumar
- Dept. of Chemical Engineering, Indian Institute of Technology, IIT Delhi, Hauz Khas, New Delhi, 110016, India
| | | | | |
Collapse
|