Jang SY, Han SH. Fabrication of Si negative electrodes for Li-ion batteries (LIBs) using cross-linked polymer binders.
Sci Rep 2016;
6:38050. [PMID:
27991497 PMCID:
PMC5171867 DOI:
10.1038/srep38050]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/03/2016] [Indexed: 11/09/2022] Open
Abstract
Currently, Si as an active material for LIBs has been attracting much attention due to its high theoretical specific capacity (3572 mAh g−1). However, a disadvantage when using a Si negative electrode for LIBs is the abrupt drop of its capabilities during the cycling process. Therefore, there have been a few studies of polymers such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR) and polyacrylic acid (PAA) given that the robust structure of a polymeric binder to LIBs anodes is a promising means by which to enhance the performance of high-capacity anodes. These studies essentially focused mainly on modifying of the linear-polymer component or on copolymers dissolved in solvents. Cross-linking polymers as a binder may be preferred due to their good scratch resistance, excellent chemical resistance and high levels of adhesion and resilience. However, because these types of polymers (with a rigid structure and cross-linking points) are also insoluble in general organic solvents, applying these types in this capacity is virtually impossible.
Collapse